Fahrul Huyop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085774/publications.pdf

Version: 2024-02-01

99 papers

2,373 citations

430874 18 h-index 233421 45 g-index

99 all docs 99 docs citations 99 times ranked 2932 citing authors

#	Article	lF	CITATIONS
1	An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnology and Biotechnological Equipment, 2015, 29, 205-220.	1.3	1,005
2	Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology and Biotechnology, 2016, 32, 135.	3.6	115
3	Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Journal of Environmental Management, 2019, 243, 206-217.	7.8	60
4	Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. Journal of Industrial and Engineering Chemistry, 2015, 32, 99-108.	5.8	55
5	A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Enzyme and Microbial Technology, 2015, 72, 49-55.	3.2	51
6	Evaluation of <i>Trichoderma</i> isolates as potential biological control agent against soybean charcoal rot disease caused by <i>Macrophomina phaseolina</i> Biotechnology and Biotechnological Equipment, 2016, 30, 479-488.	1.3	49
7	Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochemistry, 2016, 51, 249-262.	3.7	37
8	Antibacterial activity of PLAL synthesized nanocinnamon. Materials and Design, 2017, 132, 486-495.	7.0	34
9	Degradation of 3-chloropropionic acid (3CP) byPseudomonas sp. B6P isolated from a rice paddy field. Annals of Microbiology, 2009, 59, 447-451.	2.6	33
10	Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. Biotechnology and Biotechnological Equipment, 0, , 1-16.	1.3	32
11	Candida rugosa Lipase Immobilized onto Acid-Functionalized Multi-walled Carbon Nanotubes for Sustainable Production of Methyl Oleate. Applied Biochemistry and Biotechnology, 2015, 177, 967-984.	2.9	31
12	Sustainable production of the emulsifier methyl oleate by Candida rugosa lipase nanoconjugates. Food and Bioproducts Processing, 2015, 96, 211-220.	3.6	30
13	Identification of <i>Lactobacillus</i> spp <i>.</i> and <i>Fructobacillus</i> spp <i>.</i> isolated from fresh <i>Heterotrigona itama</i> honey and their antagonistic activities against clinical pathogenic bacteria. Journal of Apicultural Research, 2018, 57, 395-405.	1.5	29
14	In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölý Lake, Turkey: insights into a hypersaline-adapted dehalogenase. Annals of Microbiology, 2017, 67, 371-382.	2.6	28
15	Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates. Biotechnology and Biotechnological Equipment, 2015, 29, 732-739.	1.3	27
16	Functional profiling of bacterial communities in Lake Tuz using 16S rRNA gene sequences. Biotechnology and Biotechnological Equipment, 2021, 35, 1-10.	1.3	26
17	Molecular docking and molecular dynamics simulation of <i>Bacillus thuringiensis</i> dehalogenase against haloacids, haloacetates and chlorpyrifos. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1979-1994.	3.5	25
18	Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Preparative Biochemistry and Biotechnology, 2017, 47, 199-210.	1.9	23

#	Article	IF	CITATIONS
19	Dehalogenase-producing halophiles and their potential role in bioremediation. Marine Pollution Bulletin, 2020, 160, 111603.	5.0	22
20	Modelling and optimization of <i>Candida rugosa </i> nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology. Biotechnology and Biotechnological Equipment, 2015, 29, 1113-1127.	1.3	21
21	Alternative Bioremediation Agents against Haloacids, Haloacetates and Chlorpyrifos Using Novel Halogen-Degrading Bacterial Isolates from the Hypersaline Lake Tuz. Catalysts, 2020, 10, 651.	3.5	20
22	Molecular Modelling and Functional Studies of the Non-Stereospecific α-Haloalkanoic Acid Dehalogenase (DehE) from <i>Rhizobium</i> SP. RC1 and its Association with 3-Chloropropionic Acid (β-Chlorinated Aliphatic Acid). Biotechnology and Biotechnological Equipment, 2013, 27, 3725-3736.	1.3	19
23	<i>In silico</i> and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from Acinetobacter haemolyticus. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3077-3093.	3.5	19
24	Fungal-Assisted Valorization of Raw Oil Palm Leaves for Production of Cellulase and Xylanase in Solid State Fermentation Media. Waste and Biomass Valorization, 2020, 11, 3133-3149.	3.4	19
25	Molecular docking and molecular dynamics simulations of a mutant <i>Acinetobacter haemolyticus</i> alkaline-stable lipase against tributyrin. Journal of Biomolecular Structure and Dynamics, 2021, 39, 2079-2091.	3.5	19
26	l-2-Haloacid dehalogenase (DehL) from Rhizobium sp. RC1. SpringerPlus, 2016, 5, 695.	1.2	17
27	Biodegradation of Low Concentration of Monochloroacetic Acid-Degrading Bacillus sp. TW1 Isolated from Terengganu Water Treatment and Distribution Plant. Journal of Applied Sciences, 2010, 10, 2940-2944.	0.3	17
28	Characterisation of Arthrobacter sp. S1 that can degrade \hat{l}_{\pm} and \hat{l}_{-} -haloalkanoic acids isolated from contaminated soil. Annals of Microbiology, 2013, 63, 1363-1369.	2.6	16
29	Degradation of D,L-2-chloropropionic Acid by Bacterial Dehalogenases that Shows Stereospecificity and its Partial Enzymatic Characteristics. Biotechnology, 2009, 8, 264-269.	0.1	16
30	Isolation and Characterization of a Novel Bacterium from the Marine Environment for Trichloroacetic Acid Bioremediation. Applied Sciences (Switzerland), 2020, 10, 4593.	2.5	15
31	Investigation of Factors in Optimizing Agrobacterium-Mediated Gene Transfer in Citrullus lanatus cv. Round Dragon. Journal of Biological Sciences, 2010, 10, 209-216.	0.3	15
32	Identification of QTLs for Morph-Physiological Traits Related to Salinity Tolerance at Seedling Stage in Indica Rice. Procedia Environmental Sciences, 2011, 8, 389-395.	1.4	14
33	Enzymatic Dehalogenation of 2,2-Dichloropropionic Acid by Locally Isolated Methylobacterium sp. HJ1. Journal of Biological Sciences, 2007, 8, 233-235.	0.3	14
34	Multi-template homology-based structural model of L-2-haloacid dehalogenase (DehL) from <i>Rhizobium</i> sp. RC1. Journal of Biomolecular Structure and Dynamics, 2017, 35, 3285-3296.	3.5	13
35	Haloacid dehalogenases of Rhizobium sp. and related enzymes: Catalytic properties and mechanistic analysis. Process Biochemistry, 2020, 92, 437-446.	3.7	13
36	Customised structural, optical and antibacterial characteristics of cinnamon nanoclusters produced inside organic solvent using 532Ânm Q-switched Nd:YAG-pulse laser ablation. Optics and Laser Technology, 2020, 130, 106331.	4.6	13

3

#	Article	IF	Citations
37	Biodegradation of Monochloroacetic Acid by a Presumptive Pseudomonas sp. Strain R1 Bacterium Isolated from Malaysian Paddy (Rice) Field. Biotechnology, 2008, 7, 481-486.	0.1	13
38	D-Specific Dehalogenases, a Review. Biotechnology and Biotechnological Equipment, 2012, 26, 2817-2822.	1.3	12
39	<i>In silico</i> mutation on a mutant lipase from <i>Acinetobacter haemolyticus</i> towards enhancing alkaline stability. Journal of Biomolecular Structure and Dynamics, 2020, 38, 4493-4507.	3.5	12
40	Whole genome strategies and bioremediation insight into dehalogenase-producing bacteria. Molecular Biology Reports, 2021, 48, 2687-2701.	2.3	12
41	A review on non-stereospecific haloalkanoic acid dehalogenases. African Journal of Biotechnology, 2011, 10, 9725-9736.	0.6	11
42	Identification of functional residues essential for dehalogenation by the nonâ€stereospecific αâ€haloalkanoic acid dehalogenase from ⟨i⟩Rhizobium⟨/i⟩ sp. RC1. Journal of Basic Microbiology, 2015, 55, 324-330.	3.3	11
43	Biodegradation of 3-chloropropionic acid (3-CP) by Bacillus cereus WH2 and its in silico enzyme-substrate docking analysis. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3432-3441.	3.5	11
44	Haloadaptation: insights from comparative modeling studies between halotolerant and non-halotolerant dehalogenases. Journal of Biomolecular Structure and Dynamics, 2020, 38, 3452-3461.	3.5	11
45	Morphological alterations in gram-positive and gram-negative bacteria exposed to minimal inhibitory and bactericidal concentration of raw Malaysian stingless bee honey. Biotechnology and Biotechnological Equipment, 2020, 34, 575-586.	1.3	11
46	A statistical approach for optimizing the protocol for overexpressing lipase KV1 in Escherichia coli: purification and characterization. Biotechnology and Biotechnological Equipment, 2018, 32, 69-87.	1.3	11
47	An S188V Mutation Alters Substrate Specificity of Non-Stereospecific α-Haloalkanoic Acid Dehalogenase E (DehE). PLoS ONE, 2015, 10, e0121687.	2.5	11
48	Cloning and DNA Sequence Analysis of the Haloalkanoic Permease Uptake Gene from Rhizobium sp. RC1. Biotechnology, 2010, 9, 319-325.	0.1	11
49	Molecular Prediction of Dehalogenase Producing Microorganism using 16S rDNA Analysis of 2,2-dichloropropionate (Dalapon) Degrading Bacterium Isolated from Volcanic Soil. Journal of Biological Sciences, 2010, 10, 190-199.	0.3	11
50	Regulation of Dehalogenase E (Dehe) and Expression of Dehalogenase Regulator Gene (<i>Dehr</i>) from <i>Rhizobium</i> Sp. RC1 in <i>E. Coli</i>). Biotechnology and Biotechnological Equipment, 2011, 25, 2237-2242.	1.3	10
51	Structure Prediction, Molecular Dynamics Simulation and Docking Studies of D-Specific Dehalogenase from Rhizobium sp. RC1. International Journal of Molecular Sciences, 2012, 13, 15724-15754.	4.1	10
52	Insights into the stereospecificity of the <scp>d < /scp>-specific dehalogenase from <i>Rhizobium < /i>sp. RC1 toward <scp>d </scp>- and <scp>l < /scp>-2-chloropropionate. Biotechnology and Biotechnological Equipment, 2014, 28, 608-615.</scp></i></scp>	1.3	10
53	Comparative diversity and heavy metal biosorption of myxomycetes from forest patches on ultramafic and volcanic soils. Chemistry and Ecology, 2015, 31, 741-753.	1.6	10
54	Deciphering the catalytic amino acid residues of I -2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1: An in silico analysis. Computational Biology and Chemistry, 2017, 70, 125-132.	2.3	10

#	Article	IF	CITATIONS
55	The mechanistic role of active site residues in non-stereo haloacid dehalogenase E (DehE). Journal of Molecular Graphics and Modelling, 2019, 90, 219-225.	2.4	10
56	<i>In silico</i> assessment of dehalogenase from <i>Bacillus thuringiensis</i> H2 in relation to its salinity-stability and pollutants degradation. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9332-9346.	3.5	10
57	Characterization of an α-haloalkanoic acid–degrading <i>Pseudomonas aeruginosa</i> MX1 isolated from contaminated seawater. Bioremediation Journal, 2016, 20, 89-97.	2.0	9
58	Degradation of 3-Chloropropionic Acid by Escherichia coli JM109 Expressing Dehalogenase (deh) Gene used as Selection Marker. Biotechnology, 2009, 8, 385-388.	0.1	9
59	Efficacy and cost study of green fungicide formulated from crude beta-glucosidase. International Journal of Environmental Science and Technology, 2019, 16, 4503-4518.	3.5	8
60	A Further Characterization of 3-Chloropropionic Acid Dehalogenase from Rhodococcus sp. HJ1. Research Journal of Microbiology, 2008, 3, 482-488.	0.2	8
61	Screening and Characterization of Several 2,2-Dicholoropropionic Acid–Degrading Bacteria Isolated from Marine Sediment of Danga Bay and East Coast of Singapore Island. Bioremediation Journal, 2014, 18, 20-27.	2.0	7
62	Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by <i>Trichoderma harzianum</i> Rifai efficient for <i>in vitro</i> inhibition of <i>Macrophomina phaseolina</i> . Biotechnology and Biotechnological Equipment, 2017, 31, 921-934.	1.3	7
63	Biophysical characterization of a recombinant lipase KV1 from Acinetobacter haemolyticus in relation to pH and temperature. Biochimie, 2018, 152, 198-210.	2.6	7
64	Solidâ€state valorization of raw oil palm leaves by novel fungi <i>Trichoderma asperellum</i> <scp>UC1</scp> and <i>Rhizopus oryzae</i> <scp>UC2</scp> for sustainable production of cellulase and xylanase. Journal of Chemical Technology and Biotechnology, 2022, 97, 520-533.	3.2	7
65	Callus Induction and Shoot Organogenesis in Two Sugar Beet (Beta vulgaris L.) Breeding Lines in vitro Cultured. Biotechnology, 2013, 12, 168-178.	0.1	7
66	An Easy Method for Agrobacterium tumefaciens-Mediated Gene Transfer to Nicotiana tabacum cv. TAPM26. Journal of Biological Sciences, 2010, 10, 480-489.	0.3	7
67	Molecular identification and characterization of Dalapon-2,2-dichloropropionate (2,2DCP)-degrading bacteria from a Rubber Estate Agricultural area. African Journal of Microbiology Research, 2012, 6, 1520-1526.	0.4	6
68	Agrobacterium tumefaciens-infection Strategies for Greater Transgenic Recovery in Nicotiana tabacum cv. TAPM26. International Journal of Agricultural Research, 2011, 6, 119-133.	0.1	6
69	Theoretical analyses on enantiospecificity of L-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1 towards 2-chloropropionic acid. Journal of Molecular Graphics and Modelling, 2019, 92, 131-139.	2.4	5
70	Genomic analysis of a functional haloacid-degrading gene of Bacillus megaterium strain BHS1 isolated from Blue Lake (Mavi Gölü, Turkey). Annals of Microbiology, 2021, 71, .	2.6	5
71	Further Analysis of <i>Burkholderia pseudomallei</i> MF2 and Identification of Putative Dehalogenase Gene by PCR. Indonesian Journal of Chemistry, 2020, 20, 386.	0.8	5
72	Molecular Identification and Characterization of a Bacterium that has Potential to Degrade Low Concentration of Haloalkanoic Acid. Research Journal of Microbiology, 2011, 6, 552-559.	0.2	5

#	Article	IF	CITATIONS
73	Genomic characterization of a dehalogenase-producing bacterium (Bacillus megaterium H2) isolated from hypersaline Lake Tuz (Turkey). Gene Reports, 2021, 25, 101381.	0.8	5
74	<i>In silico</i> analysis of a putative dehalogenase from the genome of halophilic bacterium <i>Halomonas smyrnensis</i> AAD6T. Journal of Biomolecular Structure and Dynamics, 2023, 41, 319-335.	3.5	5
75	Lactic acid bacteria and their bacteriocins: new potential weapons in the fight against methicillin-resistant <i>Staphylococcus aureus</i> . Future Microbiology, 2022, 17, 683-699.	2.0	5
76	Molecular Characterization of Monochloroacetate-DegradingArthrobactersp. Strain D2 Isolated from Universiti Teknologi Malaysia Agricultural Area. Bioremediation Journal, 2014, 18, 12-19.	2.0	4
77	Homology modelling and <i>in silico </i> substrate-binding analysis of a <i>Rhizobium </i> sp. RC1 haloalkanoic acid permease. Biotechnology and Biotechnological Equipment, 2018, 32, 339-349.	1.3	4
78	Physicochemical Properties of a New Green Honey from Banggi Island, Sabah. Molecules, 2022, 27, 4164.	3.8	4
79	A Potential Use of Dehalogenase D (DehD) from Rhizobium sp. for Industrial Process. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.4	3
80	Degradation of Millimolar Concentration of the Herbicide Dalapon (2,2-Dichloropropionic Acid) byRhizobiumSp. Isolated from Soil. Biotechnology and Biotechnological Equipment, 2012, 26, 3106-3112.	1.3	3
81	Interactions of non-natural halogenated substrates with D-specific dehalogenase (DehD) mutants usingin silicostudies. Biotechnology and Biotechnological Equipment, 2014, 28, 949-957.	1.3	3
82	The diversity of superior Indonesian durians based on molecular markers. AIP Conference Proceedings, $2019, , .$	0.4	3
83	A single epitope of Epstein-Barr Virus stimulate IgG production in mice. Annals of Medicine and Surgery, 2018, 35, 55-58.	1.1	2
84	Morphological-based diversity analysis of durian from Kundur Island, Indonesia. AIP Conference Proceedings, 2019 , , .	0.4	2
85	Assessments on the catalytic and kinetic properties of beta-glucosidase isolated from a highly efficient antagonistic fungus Trichoderma harzianum. Bioscience Journal, 0, , 830-847.	0.4	2
86	Isolation of bacteria from Tuz Gölü lake that can grow on high salt concentration. International Journal of Life Sciences and Biotechnology, 2019, 2, 158-164.	0.7	2
87	Characteristics of dehalogenase from bacteria isolated from the Gut of Pond-reared Rohu (<i>Labeo rohita</i>) Juveniles in Myanmar. Advances in Bioscience and Biotechnology (Print), 2012, 03, 353-361.	0.7	2
88	ISOLATION AND CHARACTERISATION OF THE DEGRADATION POTENTIAL OF 2,2-DICHLOROPROPIONATE (2,2-DCP) BY BACILLUS AMYLOLIQUEFACIENS FROM GEBENG. International Journal of Life Sciences and Biotechnology, 2022, 5, 200-212.	0.7	2
89	ISOLATION AND IDENTIFICATION OF 3-CHLOROPROPIONIC ACID DEGRADING BACTERIUM FROM MARINE SPONGE. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	1
90	A Potential Use Of Dehalogenase D (DEHD) From Rhizobium sp. For Industrial Process. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.4	1

#	Article	IF	CITATIONS
91	Molecular interactions of trichoderma \hat{l}^2 -1,4-glucosidase (ThBglT12) with mycelial cell wall components of phytopathogenic <i>Macrophomina phaseolina</i> . Journal of Biomolecular Structure and Dynamics, 2022, , 1-17.	3.5	1
92	Exploring the genome of <i>Lactobacillaceae</i> spp. Sy-1 isolated from <i>Heterotrigona itama</i> honey. PeerJ, 2022, 10, e13053.	2.0	1
93	RAPD and Protein Analyses Revealed Polymorphism in Mutated Potato Cultivars. Jurnal Teknologi (Sciences and Engineering), 2013, 64, .	0.4	O
94	IDENTIFICATION OF NOVEL BACTERIAL SPECIES CAPABLE OF DEGRADING DALAPON USING 16S RRNA SEQUENCING. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
95	Effect of storage on viability of lactic acid bacteria and nutritional stability of raw Malaysian Heterotrigona itama honey. Journal of Physics: Conference Series, 2020, 1567, 032039.	0.4	0
96	ANTIOXIDANT ACTIVITY, TOTAL PHENOLIC AND CHLOROPHYLL CONTENT OF KENINGAU GROWN CUCUMIS SATIVUS L. AT TWO GROWTH STAGES. Jurnal Teknologi (Sciences and Engineering), 2021, 83, 37-44.	0.4	0
97	Post-Covid-19 Pandemic Awareness on The Use of Micro- and Nano Plastic and Efforts into Their Degradation - A Mini Review. Journal of Tropical Life Science, 2021, 11, 225-232.	0.3	O
98	Pengoptimuman Penyelesaian Masalah Penjadualan Waktu Kuliah dengan Teknik Algoritma Genetik. Jurnal Teknologi (Sciences and Engineering), 0, , .	0.4	0
99	Synthetic bxn Gene Utilization in the Resistance of Crops to the Herbicide Bromoxynil – A Review. Jurnal Teknologi (Sciences and Engineering), 2013, 59, .	0.4	O