Walter Del Pozzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085675/publications.pdf

Version: 2024-02-01

142 papers 34,932 citations

65 h-index 137 g-index

145 all docs 145
docs citations

145 times ranked 14179 citing authors

#	Article	IF	Citations
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
2	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
3	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
4	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
5	Advanced LIGO. Classical and Quantum Gravity, 2015, 32, 074001.	4.0	1,929
6	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
7	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	4.0	1,029
8	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
9	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
10	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
11	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, 2015, 91, .	4.7	674
12	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
13	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
14	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
15	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
16	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
17	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
18	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315

#	Article	IF	CITATIONS
19	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
20	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	1.2	257
21	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
22	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
23	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
24	Demonstrating the Feasibility of Probing the Neutron-Star Equation of State with Second-Generation Gravitational-Wave Detectors. Physical Review Letters, 2013, 111, 071101.	7.8	201
25	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
26	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	4.7	185
27	Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Physical Review D, 2012, 85, .	4.7	176
28	Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers. Physical Review D, 2012, 86, .	4.7	173
29	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	4.0	171
30	Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D, 2018, 98, .	4.7	168
31	Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Physical Review D, 2015, 92, .	4.7	153
32	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
33	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
34	Matter imprints in waveform models for neutron star binaries: Tidal and self-spin effects. Physical Review D, 2019, 99, .	4.7	144
35	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	4.7	132
36	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131

#	Article	IF	Citations
37	TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Physical Review D, 2014, 89, .	4.7	130
38	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	4.5	125
39	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	4.7	119
40	Mock data challenge for the Einstein Gravitational-Wave Telescope. Physical Review D, 2012, 86, .	4.7	107
41	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	4.7	107
42	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
43	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	4.5	104
44	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
45	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
46	Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants. Astrophysical Journal Letters, 2017, 842, L10.	8.3	96
47	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
48	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	4.7	91
49	Observational black hole spectroscopy: A time-domain multimode analysis of GW150914. Physical Review D, 2019, 99, .	4.7	89
50	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	4.7	88
51	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	7.8	86
52	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
53	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	5.1	84
54	Triple Michelson interferometer for a third-generation gravitational wave detector. Classical and Quantum Gravity, 2009, 26, 085012.	4.0	83

#	Article	IF	Citations
55	Testing general relativity using golden black-hole binaries. Physical Review D, 2016, 94, .	4.7	80
56	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	5.1	75
57	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	4.0	73
58	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	4.7	73
59	Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D, 2017, 95, .	4.7	72
60	Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes. Classical and Quantum Gravity, 2018, 35, 014002.	4.0	72
61	Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems. Physical Review D, 2011, 83, .	4.7	70
62	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	4.7	69
63	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
64	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	7.8	68
65	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
66	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	4.7	66
67	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	4.5	66
68	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	4.7	65
69	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	4.7	64
70	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
71	AT2017gfo: Bayesian inference and model selection of multicomponent kilonovae and constraints on the neutron star equation of state. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1661-1677.	4.4	63
72	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	7.7	62

#	Article	IF	Citations
73	Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Physical Review D, 2012, 85, .	4.7	62
74	Empirical tests of the black hole no-hair conjecture using gravitational-wave observations. Physical Review D, 2018, 98, .	4.7	61
75	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	4.7	60
76	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
77	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	4.7	60
78	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	4.7	59
79	Massive black hole binary systems and the NANOGrav 12.5 yr results. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 502, L99-L103.	3.3	58
80	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	7.7	57
81	Cosmological inference using only gravitational wave observations of binary neutron stars. Physical Review D, 2017, 95, .	4.7	53
82	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
83	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	4.7	48
84	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	4.7	47
85	Stellar binary black holes in the LISA band: a new class of standard sirens. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3485-3492.	4.4	47
86	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
87	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
88	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	4.7	43
89	Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations. Journal of Physics: Conference Series, 2012, 363, 012028.	0.4	42
90	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	4.0	42

#	Article	IF	Citations
91	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1 1	0.784314	· rgBT /Overlo
92	Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method. Physical Review D, 2018, 97, .	4.7	40
93	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	4.7	39
94	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	4.7	37
95	Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run. Physical Review D, 2014, 89, .	4.7	35
96	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
97	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	4.0	34
98	Search for Gravitational Waves Associated with $<$ mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> $<$ mml:mi> $\hat{I}^3<$ mml:mi> $<$ mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters, 2014, 113, 011102.	7.8	32
99	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
100	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	4.7	31
101	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
102	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	4.7	29
103	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	4.7	29
104	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	4.7	28
105	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.4	27
106	Constraining black hole mimickers with gravitational wave observations. Physical Review D, 2020, 102,	4.7	27
107	Estimating parameters of binary black holes from gravitational-wave observations of their inspiral, merger, and ringdown. Physical Review D, 2016, 94, .	4.7	26
108	Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	26

#	Article	IF	Citations
109	No tension between assembly models of super massive black hole binaries and pulsar observations. Nature Communications, 2018, 9, 573.	12.8	24
110	Regulation of the Flt3 Gene in Haematopoietic Stem and Early Progenitor Cells. PLoS ONE, 2015, 10, e0138257.	2.5	23
111	Astrophysical constraints on massive black hole binary evolution from pulsar timing arrays. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 455, L72-L76.	3.3	23
112	Efficient computation of the gravitational wave spectrum emitted by eccentric massive black hole binaries in stellar environments. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1738-1749.	4.4	23
113	Probing the assembly history and dynamical evolution of massive black hole binaries with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2017, 468, 404-417.	4.4	23
114	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	4.0	21
115	Constraints on Kerr-Newman black holes from merger-ringdown gravitational-wave observations. Physical Review D, 2022, 105, .	4.7	21
116	Analytic family of post-merger template waveforms. Physical Review D, 2017, 95, .	4.7	20
117	How serious can the stealth bias be in gravitational wave parameter estimation?. Physical Review D, 2014, 89, .	4.7	19
118	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	4.7	19
119	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
120	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	4.7	17
121	Quantum black hole spectroscopy: probing the quantum nature of the black hole area using LIGO–Virgo ringdown detections. Classical and Quantum Gravity, 2021, 38, 095005.	4.0	17
122	Testing general relativity with compact coalescing binaries: comparing exact and predictive methods to compute the Bayes factor. Classical and Quantum Gravity, 2014, 31, 205006.	4.0	16
123	Eigenvalue repulsions in the quasinormal spectra of the Kerr-Newman black hole. Physical Review D, 2022, 105, .	4.7	15
124	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
125	Cosmic archaeology with massive stellar black hole binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L81-L85.	3.3	14
126	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.4	12

#	Article	IF	Citations
127	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	4.0	11
128	Population inference of spin-induced quadrupole moments as a probe for nonblack hole compact binaries. Physical Review D, 2022, 105, .	4.7	11
129	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
130	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
131	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	1.3	8
132	Measuring the Hubble constant using gravitational waves. Journal of Physics: Conference Series, 2014, 484, 012030.	0.4	7
133	On tests of general relativity with binary radio pulsars. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 462, L21-L25.	3.3	7
134	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
135	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.4	2
136	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
137	Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era: Further investigations. Journal of Physics: Conference Series, 2014, 484, 012026.	0.4	1
138	MEASURING THE REDSHIFT OF STANDARD SIRENS USING THE NEUTRON STAR DEFORMABILITY., 2015, , .		1
139	TESTING GENERAL RELATIVITY USING GRAVITATIONAL WAVES FROM BINARY NEUTRON STARS: EFFECT OF SPINS. , 2015, , .		1
140	Status of the Advanced Virgo Gravitational Wave Detector. , 2018, , .		1
141	Distinct Mechanisms Regulate the Expression of flt3 Gene in Normal and Leukaemia-Like Stem Cells Blood, 2009, 114, 4586-4586.	1.4	0
142	ADVANCED VIRGO INTERFEROMETER: A SECOND GENERATION DETECTOR FOR GRAVITATIONAL WAVES OBSERVATION., 2015, , .		0