Yanfa Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085366/publications.pdf

Version: 2024-02-01

1463 2385 44,762 503 107 h-index citations papers

198 g-index

522 522 docs citations all docs

522 times ranked

30943 citing authors

#	Article	IF	CITATIONS
1	Understanding the Interplay Between CdSe Thickness and Cu Doping Temperature in CdSe/CdTe Devices. IEEE Journal of Photovoltaics, 2022, 12, 11-15.	2.5	8
2	Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells. Solar Energy Materials and Solar Cells, 2022, 235, 111451.	6.2	14
3	Improving CdSeTe Devices With a Back Buffer Layer of Cu _x AlO _y . IEEE Journal of Photovoltaics, 2022, 12, 16-21.	2.5	9
4	Templated Growth and Passivation of Vertically Oriented Antimony Selenide Thin Films for Highâ€Efficiency Solar Cells in Substrate Configuration. Advanced Functional Materials, 2022, 32, 2110032.	14.9	40
5	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	12.6	216
6	Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS	8.0	53
7	Self-Trapped Excitons and Broadband Emission in Metal Halide Perovskites. , 2022, , 37-63.		O
8	Controlling the Formation Process of Methylammoniumâ€Free Halide Perovskite Films for a Homogeneous Incorporation of Alkali Metal Cations Beneficial to Solar Cell Performance. Advanced Energy Materials, 2022, 12, .	19.5	27
9	Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Singleâ€Junction and Tandem Solar Cells. Advanced Materials, 2022, 34, e2110351.	21.0	62
10	Perovskite Solar Cells Go Bifacialâ€"Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	21.0	31
11	Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nature Energy, 2022, 7, 65-73.	39.5	158
12	Reduced Recombination and Improved Performance of CdSe/CdTe Solar Cells due to Cu Migration Induced by Light Soaking. ACS Applied Materials & (2022, 14, 19644-19651).	8.0	12
13	Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustainable Energy and Fuels, 2022, 6, 2718-2726.	4.9	11
14	Indium Gallium Oxide Emitters for High-Efficiency CdTe-Based Solar Cells. ACS Applied Energy Materials, 2022, 5, 5484-5489.	5.1	13
15	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	39.5	121
16	Metal Halide Scintillators with Fast and Selfâ€Absorptionâ€Free Defectâ€Bound Excitonic Radioluminescence for Dynamic Xâ€Ray Imaging. Advanced Functional Materials, 2021, 31, 2007921.	14.9	78
17	Structural Properties and Stability of Inorganic CsPbI ₃ Perovskites. Small Structures, 2021, 2, 2000089.	12.0	39
18	Optical and Electronic Losses Arising from Physically Mixed Interfacial Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 4923-4934.	8.0	14

#	Article	IF	CITATIONS
19	Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 2021, 371, 636-640.	12.6	184
20	Electrical doping in halide perovskites. Nature Reviews Materials, 2021, 6, 531-549.	48.7	189
21	Efficient and Stable Red Perovskite Lightâ€Emitting Diodes with Operational Stability >300 h. Advanced Materials, 2021, 33, e2008820.	21.0	119
22	Hybrid 3D Nanostructure-Based Hole Transport Layer for Highly Efficient Inverted Perovskite Solar Cells. ACS Applied Materials & Solar 13, 16611-16619.	8.0	10
23	Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7, .	10.3	41
24	Influence of Post-selenization Temperature on the Performance of Substrate-Type Sb ₂ Se ₃ Solar Cells. ACS Applied Energy Materials, 2021, 4, 4313-4318.	5.1	32
25	Enabling bifacial thin film devices by developing a back surface field using CuxAlOy. Nano Energy, 2021, 83, 105827.	16.0	32
26	High-Photovoltage All-Perovskite Tandem Solar Cells for Photovoltaic-Electrolysis Water-Splitting Applications. , 2021, , .		1
27	Temperature-dependency of ferroelectric behavior in CH3NH3PbI3 perovskite films measured by the Sawyer–Tower method. MRS Advances, 2021, 6, 613-617.	0.9	1
28	Low-temperature and effective ex situ group V doping for efficient polycrystalline CdSeTe solar cells. Nature Energy, 2021, 6, 715-722.	39.5	31
29	Life Cycle Assessment of Perovskite/Silicon Tandem Solar Cells Coupled with Solar Flow Battery Systems., 2021,,.		1
30	On the design and performance of InGaN/Si double-junction photocathodes. Applied Physics Letters, 2021, 118, .	3.3	6
31	Fabricating Efficient CdTe Solar Cells: The Effect of Cu Precursor. , 2021, , .		2
32	Understanding the Interplay between CdSe Thickness and Cu Doping Temperature in CdSe/CdTe Devices. , 2021, , .		6
33	Optimizing the Selenization of Sb2Se3 Absorbers to Improve the Film Quality and Solar Cell Performances., 2021,,.		0
34	Determining the Limiting Interface for Thin Film Solar Cells Using Intensity Dependent Front and Back Illuminated Device Performance., 2021,,.		0
35	Mitigating ion migration in perovskite solar cells. Trends in Chemistry, 2021, 3, 575-588.	8.5	81
36	Protecting Perovskite Solar Cells against Moisture-Induced Degradation with Sputtered Inorganic Barrier Layers. ACS Applied Energy Materials, 2021, 4, 7571-7578.	5.1	20

#	Article	IF	Citations
37	A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. Journal of the American Chemical Society, 2021, 143, 11361-11369.	13.7	47
38	Impact of Humidity and Temperature on the Stability of the Optical Properties and Structure of MAPbI3, MAO.7FAO.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 Perovskite Thin Films. Materials, 2021, 14, 4054.	2.9	10
39	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	10.0	22
40	Effects of Cu Precursor on the Performance of Efficient CdTe Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 38432-38440.	8.0	15
41	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	12.8	10
42	Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices. Solar Energy, 2021, 228, 38-44.	6.1	11
43	Assessing the true power of bifacial perovskite solar cells under concurrent bifacial illumination. Sustainable Energy and Fuels, 2021, 5, 2865-2870.	4.9	17
44	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2021, , eabj2637.	12.6	2
45	Interface modification of sputtered NiO _x as the hole-transporting layer for efficient inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1972-1980.	5. 5	66
46	High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. Journal of Physical Chemistry C, 2020, 124, 1330-1336.	3.1	30
47	Origin of Broad-Band Emission and Impact of Structural Dimensionality in Tin-Alloyed Ruddlesden–Popper Hybrid Lead Iodide Perovskites. ACS Energy Letters, 2020, 5, 347-352.	17.4	55
48	Charge Compensating Defects in Methylammonium Lead Iodide Perovskite Suppressed by Formamidinium Inclusion. Journal of Physical Chemistry Letters, 2020, 11, 121-128.	4.6	15
49	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	39.5	165
50	Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration. ACS Energy Letters, 2020, 5, 2560-2568.	17.4	131
51	Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts. Nature Communications, 2020, 11, 3513.	12.8	184
52	InGaN/Si Double-Junction Photocathode for Unassisted Solar Water Splitting. ACS Energy Letters, 2020, 5, 3741-3751.	17.4	49
53	A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. Joule, 2020, 4, 1977-1987.	24.0	111
54	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	13.7	103

#	Article	IF	CITATIONS
55	Effects of post-deposition CdCl2 annealing on electronic properties of CdTe solar cells. Solar Energy, 2020, 211, 938-948.	6.1	9
56	Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells. Solar Energy Materials and Solar Cells, 2020, 218, 110764.	6.2	10
57	Back-Surface Passivation of CdTe Solar Cells Using Solution-Processed Oxidized Aluminum. ACS Applied Materials & Discrete Solution (12, 51337-51343).	8.0	15
58	CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials, 2020, 13, 1991.	2.9	13
59	The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.	2.8	274
60	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	12.2	35
61	Sputtered indium tin oxide as a recombination layer formed on the tunnel oxide/poly-Si passivating contact enabling the potential of efficient monolithic perovskite/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2020, 210, 110482.	6.2	33
62	Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule, 2020, 4, 644-657.	24.0	69
63	Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3) <i>x</i> (FASnI3)(FASnI3)(FASnI3)(FASnI3)(FASNI3) <td>3.0</td> <td>26</td>	3.0	26
64	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10588-10596.	8.0	27
65	In Situ Tin(II) Complex Antisolvent Process Featuring Simultaneous Quasi ore–Shell Structure and Heterojunction for Improving Efficiency and Stability of Lowâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903013.	19.5	31
66	Is Cs ₂ TiBr ₆ a promising Pb-free perovskite for solar energy applications?. Journal of Materials Chemistry A, 2020, 8, 4049-4054.	10.3	62
67	Maximize CdTe solar cell performance through copper activation engineering. Nano Energy, 2020, 73, 104835.	16.0	35
68	Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>nl:<mark>7.8</mark>>3<td>mml:mn></td></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nl: <mark>7.8</mark> >3 <td>mml:mn></td>	mml:mn>
69	Cryogenic spatial–temporal imaging of surface photocarrier dynamics in MAPbI3 films at the single grain level. AIP Advances, 2020, 10, .	1.3	2
70	Lead chloride perovskites for p-type transparent conductors: A critical theoretical reevaluation. Physical Review Materials, 2020, 4, .	2.4	8
71	Non-contacting optical probing of photovoltaic device performance. , 2020, , .		1
72	Solution Processed CuCl treatment for efficient CdS/CdTe Solar Cells. , 2020, , .		1

#	Article	IF	CITATIONS
73	Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective., 2020,,.		O
74	Incorporation of Arsenic in CdSe/CdTe Solar Cells During Close Spaced Sublimation of CdTe:As. , 2020, , .		3
75	Role of Surface Recombination Velocity and Initial Fermi Level Offset on Bifacial Thin Film Devices. , 2020, , .		0
76	21.1% Efficient Space Perovskite/Si Four-Terminal Tandem Solar Cells. , 2020, , .		3
77	Open-circuit Voltage Exceeding 840 mV for All-Sputtered CdS/CdTe Devices. , 2020, , .		5
78	Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy and Environmental Science, 2019, 12, 442-462.	30.8	433
79	Measurement of band offsets and shunt resistance in CdTe solar cells through temperature and intensity dependence of open circuit voltage and photoluminescence. Solar Energy, 2019, 189, 389-397.	6.1	9
80	A dithieno[3,2-b:2′,3′-d]pyrrole-cored four-arm hole transporting material for over 19% efficiency dopant-free perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 9455-9459.	5.5	23
81	Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Cored Hole Transport Material Enabling Over 21% Efficiency Dopantâ€Fre Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1904300.	ee 14.9	114
82	Dithieno[3,2â€b:2′,3′â€d]pyrrole Cored pâ€Type Semiconductors Enabling 20 % Efficiency Dopantâ€Fr Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 13717-13721.	ree Perovs 13.8	skite 108
83	Dithieno[3,2â€b:2′,3′â€d]pyrrole Cored pâ€Type Semiconductors Enabling 20 % Efficiency Dopantâ€Fr Solar Cells. Angewandte Chemie, 2019, 131, 13855-13859.	ree Perovs 2.0	skite 16
84	Buffer/absorber interface recombination reduction and improvement of back-contact barrier height in CdTe solar cells. Thin Solid Films, 2019, 685, 385-392.	1.8	15
85	Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule, 2019, 3, 1734-1745.	24.0	227
86	Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 1115-1123.	8.1	24
87	Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells. Science Bulletin, 2019, 64, 1608-1616.	9.0	58
88	Achieving High-Quality Sn–Pb Perovskite Films on Complementary Metal-Oxide-Semiconductor-Compatible Metal/Silicon Substrates for Efficient Imaging Array. ACS Nano, 2019, 13, 11800-11808.	14.6	40
89	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	11.2	80
90	A Cu ₃ PS ₄ nanoparticle hole selective layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4604-4610.	10.3	29

#	Article	IF	CITATIONS
91	Irradiance and temperature considerations in the design and deployment of high annual energy yield perovskite/CIGS tandems. Sustainable Energy and Fuels, 2019, 3, 1841-1851.	4.9	30
92	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	2.0	89
93	Parametric Optical Property Database for CdSe1â^'xSx Alloys. Electronic Materials Letters, 2019, 15, 500-504.	2.2	6
94	Solutionâ€processed copper (I) thiocyanate (CuSCN) for highly efficient CdSe/CdTe thinâ€film solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 665-672.	8.1	37
95	Carrier lifetimes of $\>1\ \hat{1}\frac{1}{4}$ s in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475-479.	12.6	781
96	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	16.0	152
97	Low-reflection, (110)-orientation-preferred CsPbBr $<$ sub $>$ 3 $<$ /sub $>$ nanonet films for application in high-performance perovskite photodetectors. Nanoscale, 2019, 11, 9302-9309.	5.6	38
98	Eliminating S-Kink To Maximize the Performance of MgZnO/CdTe Solar Cells. ACS Applied Energy Materials, 2019, 2, 2896-2903.	5.1	60
99	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	5.8	40
100	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	21.0	621
101	Lowâ∈Bandgap Mixed Tinâ∈Lead Perovskites and Their Applications in Allâ∈Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	14.9	133
102	Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019, 10, 665.	12.8	350
103	A new metal–organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7168-7178.	10.3	50
104	Atmospherically induced defects in (FASnI ₃) _{0.6} (MAPbI _{3â^'3<i>x</i>) Tj ETQq0 0 175102.}	0 rgBT /0 2.8	verlock 10 Tf 7
105	Operando Microscopy Characterization of Perovskite Solar Cells. , 2019, , .		1
106	Defect Analysis in CSS and Sputtered CdSexTe1-x Thin Films. , 2019, , .		1
107	Optoelectronic Characterization of Emerging Solar Absorber Cu ₃ AsS ₄ ., 2019,		3
108	ZnTe Back Buffer Layer to Enhance the Efficiency of CdS/CdTe Solar Cells. , 2019, , .		5

#	Article	IF	Citations
109	Cost analysis of thin film tandem solar cells using real world energy yield modelling. , 2019, , .		O
110	Get rid of S-kink in MZO/CdTe Solar Cells by Performing CdCl ₂ Annealing without Oxygen. , 2019, , .		2
111	Effects of Fabrication Atmosphere on Bulk and Back Interface Defects of CdTe Solar Cells with CdS and MgZnO Buffers. , 2019, , .		1
112	Monolithic Two-Terminal All-Perovskite Tandem Solar Cells with Power Conversion Efficiency Exceeding 21%., 2019,,.		3
113	Hole-Induced Spontaneous Mutual Annihilation of Dislocation Pairs. Journal of Physical Chemistry Letters, 2019, 10, 7421-7425.	4.6	0
114	Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites. Journal of Chemical Physics, 2019, 151, 244706.	3.0	16
115	Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nature Communications, 2019, 10, 5633.	12.8	267
116	Reducing Saturationâ€Current Density to Realize Highâ€Efficiency Lowâ€Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803135.	19.5	255
117	Atomistic Mechanism of Broadband Emission in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 501-506.	4.6	190
118	The Effects of Hydrogen Iodide Back Surface Treatment on CdTe Solar Cells. Solar Rrl, 2019, 3, 1800304.	5.8	29
119	Unraveling the Impact of Halide Mixing on Perovskite Stability. Journal of the American Chemical Society, 2019, 141, 3515-3523.	13.7	116
120	Bandgap Engineering of Stable Leadâ€Free Oxide Double Perovskites for Photovoltaics. Advanced Materials, 2018, 30, e1705901.	21.0	57
121	Effective Carrierâ€Concentration Tuning of SnO ₂ Quantum Dot Electronâ€Selective Layers for Highâ€Performance Planar Perovskite Solar Cells. Advanced Materials, 2018, 30, e1706023.	21.0	333
122	Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors with High Detectivity. Journal of Physical Chemistry Letters, 2018, 9, 2043-2048.	4.6	123
123	Solution-Processed Nb-Substituted BaBiO ₃ Double Perovskite Thin Films for Photoelectrochemical Water Reduction. Chemistry of Materials, 2018, 30, 1017-1031.	6.7	45
124	Roles of Pseudo-Closed s ² Orbitals for Different Intrinsic Hole Generation between Tl–Bi and In–Bi Bromide Double Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 258-262.	4.6	27
125	Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for Highâ€Performance Photoelectrochemical Water Splitting. Advanced Energy Materials, 2018, 8, 1701655.	19.5	62
126	A New Hole Transport Material for Efficient Perovskite Solar Cells With Reduced Device Cost. Solar Rrl, 2018, 2, 1700175.	5.8	31

#	Article	IF	CITATIONS
127	Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 2018, 3, 305-306.	17.4	219
128	Double Coating for the Enhancement of the Performance in a MA _{0.7} FA _{0.3} PbBr ₃ Photodetector. ACS Photonics, 2018, 5, 2100-2105.	6.6	9
129	Enhanced Grain Size and Crystallinity in CH3NH3Pbl3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication Process. MRS Advances, 2018, 3, 3237-3242.	0.9	26
130	Stability, Electronic and Optical Properties of M ₄ M′X ₄ (M = Ga or In, M′ = Si,) Tj E 10360-10364.	TQq0 0 0 3.1	rgBT /Overlo 7
131	Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy, 2018, 49, 346-353.	16.0	130
132	Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4. IScience, 2018, $1,55-71$.	4.1	21
133	Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Materials Today Energy, 2018, 7, 232-238.	4.7	31
134	Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 305-309.	2.5	58
135	Room-temperature fabrication of a delafossite CuCrO ₂ hole transport layer for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 469-477.	10.3	91
136	A Versatile Optical Model Applied to CdTe and CdSe <inf>1\hat{a}e"y</inf> Te <inf>y</inf> Alloys: Sensitivity to Film Composition and Relative Defect Density., 2018,,.		1
137	Electrical Impedance Characterization of CdTe Thin Film Solar Cells with Hydrogen Iodide Back Surface Etching. , $2018, \ldots$		2
138	Excess charge-carrier induced instability of hybrid perovskites. Nature Communications, 2018, 9, 4981.	12.8	159
139	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	39.5	422
140	All-Perovskite Tandem Solar Cell Showing Unprecedentedly High Open-Circuit Voltage. Joule, 2018, 2, 2206-2207.	24.0	4
141	Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563, 541-545.	27.8	1,451
142	Photovoltaic Effect in Indium(I) Iodide Thin Films. Chemistry of Materials, 2018, 30, 8226-8232.	6.7	13
143	Formamidinium + Cesium Lead Triiodide Perovskite Thin Films: Optical Properties and Devices. , 2018, , .		1
144	Impact of Epoxy Encapsulation on Device Stability of Large- Area Laser-Patterned Perovskite Solar Cells. , 2018, , .		2

#	Article	lF	Citations
145	3D imaging compositional map in one-step growth of CH <inf>3</inf> NH <inf>7</inf> PbI <inf>3</inf> . , 2018, , .		1
146	Manufacturing Cost Analysis of Perovskite Solar Modules in Single-Junction and All-Perovskite Tandem Configurations. , 2018, , .		11
147	Optical Hall Effect of PV Device Materials. IEEE Journal of Photovoltaics, 2018, 8, 1793-1799.	2.5	12
148	Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880-886.	16.0	104
149	Formamidinium + cesium lead triiodide perovskites: Discrepancies between thin film optical absorption and solar cell efficiency. Solar Energy Materials and Solar Cells, 2018, 188, 228-233.	6.2	21
150	Electrical and optical characterization of CdTe solar cells with CdS and CdSe buffers—A comparative study. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 052904.	1.2	17
151	Optical design of perovskite solar cells for applications in monolithic tandem configuration with CulnSe2 bottom cells. MRS Advances, 2018, 3, 3111-3119.	0.9	13
152	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	17.4	141
153	Phase Stability and Electronic Structure of Prospective Sb-Based Mixed Sulfide and Iodide 3D Perovskite (CH ₃ NH ₃)SbSI ₂ . Journal of Physical Chemistry Letters, 2018, 9, 3829-3833.	4.6	24
154	Pressure-Assisted Annealing Strategy for High-Performance Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 4714-4719.	4.6	50
155	Band Tail Engineering in Kesterite Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells with 11.8% Efficiency. Journal of Physical Chemistry Letters, 2018, 9, 4555-4561.	4.6	59
156	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	4.9	27
157	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	16.0	59
158	Low Temperature Photoluminescence Spectroscopy of Defect and Interband Transitions in CdSexTe1-x Thin Films. MRS Advances, 2018, 3, 3293-3299.	0.9	8
159	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	4.9	84
160	Efficient and Stable Nonfullereneâ€Graded Heterojunction Inverted Perovskite Solar Cells with Inorganic Ga ₂ O ₃ Tunneling Protective Nanolayer. Advanced Functional Materials, 2018, 28, 1804128.	14.9	76
161	Electronic Properties of <i>ns</i> ² Metal Halide Perovskites for Photovoltaic Applications. Materials and Energy, 2018, , 59-94.	0.1	0
162	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	6.7	61

#	Article	IF	CITATIONS
163	Advances and Obstacles on Perovskite Solar Cell Research from Material Properties to Photovoltaic Function. ACS Energy Letters, 2017, 2, 520-523.	17.4	38
164	Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2, .	39.5	634
165	Intrinsic Instability of $Cs < sub > 2 < sub > In(I)M(III)X < sub > 6 < sub > (M = Bi, Sb; X = Halogen)$ Double Perovskites: A Combined Density Functional Theory and Experimental Study. Journal of the American Chemical Society, 2017, 139, 6054-6057.	13.7	253
166	Understanding and Eliminating Hysteresis for Highly Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700414.	19.5	190
167	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	17.4	190
168	Bandgap Engineering of Leadâ€Free Double Perovskite Cs ₂ AgBiBr ₆ through Trivalent Metal Alloying. Angewandte Chemie - International Edition, 2017, 56, 8158-8162.	13.8	425
169	Bandgap Engineering of Leadâ€Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying. Angewandte Chemie, 2017, 129, 8270-8274.	2.0	40
170	Synthesis and characterization of photoelectrochemical and photovoltaic Cu ₂ BaSnS ₄ thin films and solar cells. Journal of Materials Chemistry C, 2017, 5, 6406-6419.	5.5	49
171	Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 2017, 5, 15124-15129.	10.3	213
172	Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2999-3007.	4.6	441
173	Compositional and morphological engineering of mixed cation perovskite films for highly efficient planar and flexible solar cells with reduced hysteresis. Nano Energy, 2017, 35, 223-232.	16.0	162
174	Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2017, 2, .	39.5	499
175	A layered Na _{1â^'x} Ni _y Fe _{1â^'y} O ₂ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy and Environmental Science, 2017, 10, 121-128.	30.8	201
176	Oxygenated CdS Buffer Layers Enabling High Openâ€Circuit Voltages in Earthâ€Abundant Cu ₂ BaSnS ₄ Thinâ€Film Solar Cells. Advanced Energy Materials, 2017, 7, 1601803.	19.5	102
177	Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2017, 7, 1602260.	19.5	67
178	Cu-based quaternary chalcogenide Cu ₂ BaSnS ₄ thin films acting as hole transport layers in inverted perovskite CH ₃ NH ₃ PbI ₃ solar cells. Journal of Materials Chemistry A, 2017, 5, 2920-2928.	10.3	57
179	Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. Journal of Materials Chemistry A, 2017, 5, 1658-1666.	10.3	364
180	Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4, 206-216.	12.2	553

#	Article	IF	Citations
181	Quantitative analysis of time-resolved microwave conductivity data. Journal Physics D: Applied Physics, 2017, 50, 493002.	2.8	74
182	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	10.3	40
183	Heterovalent B-Site Co-Alloying Approach for Halide Perovskite Bandgap Engineering. ACS Energy Letters, 2017, 2, 2486-2490.	17.4	44
184	Junction Quality of SnO ₂ -Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38373-38380.	8.0	56
185	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	17.4	64
186	Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials, 2017, 7, 1701136.	19.5	257
187	Roadmap on solar water splitting: current status and future prospects. Nano Futures, 2017, 1, 022001.	2.2	159
188	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	17.4	161
189	Electronic band structures and excitonic properties of delafossites: A GW-BSE study. Journal of Applied Physics, 2017, 122, 085104.	2.5	22
190	Highly Sensitive Lowâ€Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Nearâ€Infrared Region. Advanced Functional Materials, 2017, 27, 1703953.	14.9	148
191	Tracking the maximum power point of hysteretic perovskite solar cells using a predictive algorithm. Journal of Materials Chemistry C, 2017, 5, 10152-10157.	5.5	18
192	Chemical Origin of the Stability Difference between Copper(I)―and Silver(I)â€Based Halide Double Perovskites. Angewandte Chemie - International Edition, 2017, 56, 12107-12111.	13.8	89
193	Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy and Environmental Science, 2017, 10, 1874-1884.	30.8	104
194	Chemical Origin of the Stability Difference between Copper(I)―and Silver(I)â€Based Halide Double Perovskites. Angewandte Chemie, 2017, 129, 12275-12279.	2.0	79
195	One-step facile synthesis of a simple carbazole-cored hole transport material for high-performance perovskite solar cells. Nano Energy, 2017, 40, 163-169.	16.0	89
196	An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science, 2017, 357, 306-309.	12.6	744
197	Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films. AIP Advances, 2017, 7, .	1.3	24
198	Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nature Reviews Materials, 2017, 2, .	48.7	927

#	Article	IF	CITATIONS
199	Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Lowâ€Temperature Processed Yâ€Doped SnO ₂ Nanosheets as Electron Selective Layers. Small, 2017, 13, 1601769.	10.0	183
200	Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity. Materials Science in Semiconductor Processing, 2017, 65, 64-76.	4.0	36
201	Locating the electrical junctions in Cu(In,Ga)Se ₂ and Cu ₂ ZnSnSe ₄ solar cells by scanning capacitance spectroscopy. Progress in Photovoltaics: Research and Applications, 2017, 25, 33-40.	8.1	10
202	Distant-Atom Mutation for Better Earth-Abundant Light Absorbers: A Case Study of Cu ₂ BaSnSe ₄ . ACS Energy Letters, 2017, 2, 29-35.	17.4	68
203	Characterization of Single-Source Deposited Close-Space Sublimation CdTexSe1-xThin Film Solar Cells. , 2017, , .		3
204	Optical Properties of and Alloys and Their Application for CdTe Photovoltaics. , 2017, , .		6
205	Close-Space Sublimated CdTe Solar Cells with Co-Sputtered CdSxSe1-x Alloy Window Layers. , 2017, , .		3
206	Optical Evaluation of Perovskite Films in and for Solar Cell Device Structures. , 2017, , .		2
207	Life cycle toxicity analysis of emerging PV cells. , 2017, , .		1
208	Imaging the Effect of CdSe Window Layers in CdTe Photovoltaics. , 2017, , .		0
209	Characterizing recombination in CdTe-based solar cells by the temperature and excitation dependence of open-circuit voltage and photoluminescence. , 2017, , .		0
210	Global structure search and physical properties of Os2C. Journal of Physics Condensed Matter, 2016, 28, 365502.	1.8	1
211	Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12080-12087.	10.3	210
212	Stable Organic–Inorganic Perovskite Solar Cells without Holeâ€Conductor Layer Achieved via Cell Structure Design and Contact Engineering. Advanced Functional Materials, 2016, 26, 4866-4873.	14.9	84
213	Atom Probe Tomography of Interfacial Segregation in CdTe-based Solar Cells. Microscopy and Microanalysis, 2016, 22, 646-647.	0.4	0
214	Optical properties and degradation monitoring of CH <inf>3</inf> NH <inf>3</inf> ., 2016,,.		0
215	Wild band edges: The role of bandgap grading and band-edge fluctuations in high-efficiency chalcogenide devices. , 2016, , .		11
216	Determination of the electrical junction in Cu(In, Ga)Se <inf>2</inf> and Cu <inf>2</inf> ZnSnSe <inf>4</inf> solar cells with 20-nm spatial resolution. , 2016, , .		0

#	Article	IF	CITATIONS
217	Life cycle toxicity analysis of emerging PV cells. , 2016, , .		2
218	Structural and compositional dependence of the CdTexSe1â^x alloy layer photoactivity in CdTe-based solar cells. Nature Communications, 2016, 7, 12537.	12.8	108
219	Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy. Applied Physics Letters, 2016, 109, .	3.3	6
220	Characterization of CdS/CdSe window layers in CdTe thin film solar cells. , 2016, , .		4
221	RF-sputtered Cd <inf>2</inf> SnO <inf>4</inf> for flexible glass CdTe solar cells. , 2016, , .		3
222	Close-space sulfurization of sputtered metal precursors for Cu <inf>2</inf> ZnSnS <inf>4</inf> thin-film solar cells. , 2016, , .		1
223	Nanometer-scale electrical potential profiling across perovskite solar cells. , 2016, , .		3
224	Effects of oxygen partial pressure, deposition temperature, and annealing on the optical response of CdS:O thin films as studied by spectroscopic ellipsometry. Journal of Applied Physics, 2016, 120, .	2.5	9
225	Application of copper thiocyanate for high openâ€circuit voltages of CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 94-101.	8.1	22
226	Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Solar Energy Materials and Solar Cells, 2016, 156, 157-169.	6.2	168
227	APT mass spectrometry and SEM data for CdTe solar cells. Data in Brief, 2016, 7, 779-785.	1.0	1
228	Optical monitoring of CH ₃ NH ₃ Pbl ₃ thin films upon atmospheric exposure. Journal Physics D: Applied Physics, 2016, 49, 405102.	2.8	18
229	Fatigue behavior of planar CH3NH3PbI3 perovskite solar cells revealed by light on/off diurnal cycling. Nano Energy, 2016, 27, 509-514.	16.0	76
230	Thermodynamic Stability and Defect Chemistry of Bismuthâ€Based Leadâ€Free Double Perovskites. ChemSusChem, 2016, 9, 2628-2633.	6.8	273
231	Defect Physics of CH3NH3PbX3 (XÂ=ÂI, Br, Cl) Perovskites., 2016,, 79-105.		19
232	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	21.0	636
233	Defect properties of the two-dimensional (CH ₃ NH ₃) ₂ Pb(SCN) ₂ 1 ₂ perovskite: a density-functional theory study. Physical Chemistry Chemical Physics, 2016, 18, 25786-25790.	2.8	32
234	Earth-Abundant Orthorhombic BaCu ₂ Sn(Se _{<i>x</i>} S _{1â€"<i>x</i>}) ₄ (<i>x</i> â‰^ 0.83) Thin Film for Solar Energy Conversion. ACS Energy Letters, 2016, 1, 583-588.	17.4	65

#	Article	IF	CITATIONS
235	Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14276-14283.	10.3	204
236	Earth-abundant trigonal BaCu ₂ Sn(Se _x S _{1\hat{a}°x}) ₄ (x =) Tj ETQq0 2016, 4, 18885-18891.	0 0 rgBT / 10.3	Overlock 10 32
237	Crystal Structure of AgBi ₂ 1 ₇ Thin Films. Journal of Physical Chemistry Letters, 2016, 7, 3903-3907.	4.6	64
238	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	3.6	114
239	Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. Journal of the American Chemical Society, 2016, 138, 12360-12363.	13.7	362
240	Improved Performance of Electroplated CZTS Thinâ€Film Solar Cells with Bifacial Configuration. ChemSusChem, 2016, 9, 2149-2158.	6.8	40
241	Perovskite solar cells: High voltage from ordered fullerenes. Nature Energy, 2016, 1, .	39.5	9
242	TiO ₂ â€"ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14998-15003.	13.7	220
243	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	6.8	178
244	Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221.	21.0	487
245	Trigonal Cu ₂ -II-Sn-VI ₄ (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 4828-4834.	2.8	94
246	Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chemistry of Materials, 2016, 28, 821-829.	6.7	175
247	Photovoltaic Properties of Two-Dimensional (CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ Perovskite: A Combined Experimental and Density Functional Theory Study. Journal of Physical Chemistry Letters, 2016. 7. 1213-1218.	4.6	135
248	Nanoscale doping profiles within CdTe grain boundaries and at the CdS/CdTe interface revealed by atom probe tomography and STEM EBIC. Solar Energy Materials and Solar Cells, 2016, 150, 95-101.	6.2	35
249	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	3.1	72
250	Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs ₂ Snl ₆ . Chemistry of Materials, 2016, 28, 2315-2322.	6.7	329
251	Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2232-2237.	8.0	91
252	Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy, 2016, 19, 88-97.	16.0	125

#	Article	IF	Citations
253	PEDOT:PSS as back contact for CdTe solar cells and the effect of PEDOT:PSS conductivity on device performance. Journal of Materials Science: Materials in Electronics, 2016, 27, 1057-1061.	2.2	13
254	Chapter 6. Structural, Electronic, and Optical Properties of Lead Halide Perovskites. RSC Energy and Environment Series, 2016, , 177-201.	0.5	0
255	CdSe1_xTex Phase Segregation in CdSe/CdTe Based Solar Cells. Microscopy and Microanalysis, 2015, 21, 691-692.	0.4	2
256	Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors. Applied Physics Letters, 2015, 107, 141607.	3.3	5
257	Recombination by grain-boundary type in CdTe. Journal of Applied Physics, 2015, 118, .	2.5	73
258	Texture Manipulation and Its Impact on Electrical Properties of Zinc Phosphide Thin Films. Journal of Electronic Materials, 2015, 44, 2566-2573.	2.2	1
259	Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 6730-6733.	13.7	1,045
260	Physics of grain boundaries in polycrystalline photovoltaic semiconductors. Journal of Applied Physics, 2015, 117, .	2.5	52
261	Amorphous Cu-Sb-S based semiconductors for thin-film solar cell applications. , 2015, , .		0
262	Evolution of the optical response of sputtered CdS:O as a function of temperature. , 2015, , .		0
263	Spectroscopic ellipsometry studies of CH3NH3PbX3 thin films and their growth evolution., 2015,,.		5
264	The Interfacial Reaction at ITO Back Contact in Kesterite CZTSSe Bifacial Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 3043-3052.	6.7	46
265	Development of scanning capacitance spectroscopy of CIGS solar cells. , 2015, , .		2
266	Current enhancement of CdTe-based solar cells. , 2015, , .		1
267	Opto-electronic characterization of CdTe solar cells from TCO to back contact with nano-scale CL probe. , 2015 , , .		1
268	Co-electroplated kesterite bifacial thin film solar cells. , 2015, , .		1
269	Study of close space sublimation (CSS) Grown SnS thin-films for solar cell applications. , 2015, , .		3
270	Enhancing the efficiency of CdTe solar cells using a nanocrystalline iron pyrite film as an interface layer. , 2015 , , .		4

#	Article	IF	Citations
271	Effects of oxygen plasma treatment on the performance of CdTe thin-film solar cells., 2015, , .		1
272	Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. Journal of Physical Chemistry C, 2015, 119, 5253-5264.	3.1	246
273	Thin-Film Preparation and Characterization of Cs ₃ Sb ₂ I ₉ : A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.	6.7	653
274	Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Applied Physics Letters, 2015, 106, .	3.3	181
275	Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells. Solar Energy Materials and Solar Cells, 2015, 140, 108-114.	6.2	58
276	Origin of High Electronic Quality in Structurally Disordered CH ₃ NH ₃ Pbl ₃ and the Passivation Effect of Cl and O at Grain Boundaries. Advanced Electronic Materials, 2015, 1, 1500044.	5.1	175
277	High temperature CSS processed CdTe solar cells on commercial SnO2:F/SnO2 coated soda-lime glass substrates. Journal of Materials Science: Materials in Electronics, 2015, 26, 4708-4715.	2.2	8
278	Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10414-10428.	8.0	31
279	Novel ultra-incompressible phases of Ru2C. Journal of Physics Condensed Matter, 2015, 27, 175505.	1.8	1
280	Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature Communications, 2015, 6, 6700.	12.8	358
281	CdS/CdTe thinâ€film solar cells with Cuâ€free transition metal oxide/Au back contacts. Progress in Photovoltaics: Research and Applications, 2015, 23, 437-442.	8.1	38
282	A facile solvothermal growth of single crystal mixed halide perovskite CH ₃ NH ₃ Pb(Br _{1â^2x} Cl _x) ₃ . Chemical Communications, 2015, 51, 7820-7823.	4.1	135
283	Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24163-24168.	10.3	186
284	Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A, 2015, 3, 23888-23894.	10.3	161
285	Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by Cathodoluminescence Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26904-26911.	3.1	153
286	Efficient planar perovskite solar cells using room-temperature vacuum-processed C ₆₀ electron selective layers. Journal of Materials Chemistry A, 2015, 3, 17971-17976.	10.3	100
287	Theoretical and experimental study of earth-abundant solar cell materials. , 2015, , .		0
288	Causality in social life cycle impact assessment (SLCIA). International Journal of Life Cycle Assessment, 2015, 20, 1312-1323.	4.7	24

#	Article	IF	Citations
289	Current Enhancement of CdTe-Based Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1492-1496.	2.5	49
290	LDA+U/GGA+U calculations of structural and electronic properties of CdTe: Dependence on the effective U parameter. Computational Materials Science, 2015, 98, 18-23.	3.0	25
291	Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 2015, 3, 8926-8942.	10.3	1,114
292	CdTe solar cells using combined ZnS/CdS window layers. , 2014, , .		3
293	Defect Physics in Photovoltaic Materials Revealed by Combined High-Resolution Microscopy and Density-Functional Theory Calculation. Microscopy and Microanalysis, 2014, 20, 514-515.	0.4	1
294	Understanding Individual Defects in CdTe Solar Cells: From Atomic Structure to Electrical Activity. Microscopy and Microanalysis, 2014, 20, 518-519.	0.4	1
295	Effect of deposition temperature on reactively sputtered CdS:O. , 2014, , .		3
296	Creating intermediate bands in ZnTe via co-alloying approach. Applied Physics Express, 2014, 7, 121201.	2.4	7
297	Interfaces of Zinc Phosphide Magnesium Schottky Diodes. IEEE Journal of Photovoltaics, 2014, 4, 1680-1682.	2.5	1
298	S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1636-1643.	2.5	28
299	Cathodoluminescence Analysis of Grain Boundaries and Grain Interiors in Thin-Film CdTe. IEEE Journal of Photovoltaics, 2014, 4, 1671-1679.	2.5	25
300	Photoluminescence spectroscopy of Cadmium Telluride deep defects., 2014,,.		8
301	The effects of alkali metal diffusion on zinc phosphide thin films. , 2014, , .		1
302	Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions. Applied Physics Letters, 2014, 105, .	3.3	159
303	Determination of Polarizationâ€Fields Across Polytype Interfaces in InAs Nanopillars. Advanced Materials, 2014, 26, 1052-1057.	21.0	27
304	CdTe thin-film solar cells with cobalt-phthalocyanine back contacts. Applied Physics Letters, 2014, 104,	3.3	23
305	Performance of nanocrystalline iron pyrite as the back contact to CdS/CdTe solar cells., 2014,,.		4
306	Study of RF sputtered Cu <inf>3</inf> SbS <inf>4</inf> thin-film solar cells. , 2014, , .		4

#	Article	IF	Citations
307	The possibility of optical excitations at the smallest gap of Cu-delafossite nanocrystals. Journal Physics D: Applied Physics, 2014, 47, 405301.	2.8	0
308	Engineering Grain Boundaries in Cu ₂ ZnSnSe ₄ for Better Cell Performance: A Firstâ€Principle Study. Advanced Energy Materials, 2014, 4, 1300712.	19.5	135
309	Effects of growth process on the optical and electrical properties in Al-doped ZnO thin films. Journal of Applied Physics, 2014, 115, .	2.5	24
310	Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212, 237-241.	2.9	62
311	Ultrathin CdTe Solar Cells with MoO3â^'x /Au Back Contacts. Journal of Electronic Materials, 2014, 43, 2783-2787.	2.2	20
312	Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters, 2014, 104,	3.3	2,142
313	Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells. Journal of Applied Physics, 2014, 115, 064502.	2.5	38
314	Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells. Physical Review Letters, 2014, 112, 156103.	7.8	258
315	Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 2014, 26, 4653-4658.	21.0	1,735
316	Nearly lattice matched all wurtzite CdSe/ZnTe type II core–shell nanowires with epitaxial interfaces for photovoltaics. Nanoscale, 2014, 6, 3679-3685.	5.6	34
317	Effects of spin speed on the properties of spin-coated Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films and solar cells based on DMSO solution. , 2014, , .		3
318	The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells. Journal of Applied Physics, 2014, 116, 044506.	2.5	26
319	Co-electroplated Cu <inf>2</inf> ZnSnS <inf>4</inf> thin-film solar cells: The role of precursor metallic composition. , 2014, , .		3
320	Characteristics of In-Substituted CZTS Thin Film and Bifacial Solar Cell. ACS Applied Materials & Camp; Interfaces, 2014, 6, 21118-21130.	8.0	85
321	Characterization of ion-assisted, coevaporated CH <inf>3</inf> thin films. , 2014, , .		0
322	Predictions for p-Type CH ₃ NH ₃ Pbl ₃ Perovskites. Journal of Physical Chemistry C, 2014, 118, 25350-25354.	3.1	71
323	Anomalous Alloy Properties in Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2014, 5, 3625-3631.	4.6	231
324	Stability, transparency, and conductivity of MgxZn1â^'xO and CdxZn1â^'xO: Designing optimum transparency conductive oxides. Journal of Applied Physics, 2014, 115, .	2.5	10

#	Article	IF	Citations
325	Close-space sublimation grown CdS window layers for CdS/CdTe thin-film solar cells. Journal of Materials Science: Materials in Electronics, 2014, 25, 1991-1998.	2.2	26
326	Direct Imaging of Cl―and Cu―Induced Shortâ€Circuit Efficiency Changes in CdTe Solar Cells. Advanced Energy Materials, 2014, 4, 1400454.	19.5	79
327	Column-by-Column Imaging of Dislocation Slip Processes in CdTe. Microscopy and Microanalysis, 2014, 20, 1054-1055.	0.4	1
328	Thin Films: Direct Imaging of Cl―and Cuâ€Induced Shortâ€Circuit Efficiency Changes in CdTe Solar Cells (Adv. Energy Mater. 15/2014). Advanced Energy Materials, 2014, 4, .	19.5	0
329	Fabrication and characterization of high-efficiency CdTe-based thin-film solar cells on commercial SnO2:F-coated soda-lime glass substrates. Thin Solid Films, 2013, 549, 30-35.	1.8	73
330	Carrier Separation at Dislocation Pairs in CdTe. Physical Review Letters, 2013, 111, 096403.	7.8	51
331	Structural, electronic, and optical properties of Cu3-V-VI4 compound semiconductors. Applied Physics Letters, 2013, 103, .	3.3	36
332	From atomic structure to photovoltaic properties in CdTe solar cells. Ultramicroscopy, 2013, 134, 113-125.	1.9	80
333	CdS/CdTe thin-film solar cells with Cu-free MoO <inf>3−x</inf> /Au back contacts., 2013,,.		0
334	The effect of a metallic Ni core on charge dynamics in CdS-sensitized p-type NiO nanowire mesh photocathodes. RSC Advances, 2013, 3, 13342.	3.6	1
335	Control of one-dimensional magnetism in graphene via spontaneous hydrogenation of the grain boundary. Physical Chemistry Chemical Physics, 2013, 15, 8271.	2.8	5
336	Effect of gas ambient and varying RF sputtering power for bandgap narrowing of mixed (ZnO:GaN) thin films for solar driven hydrogen production. Journal of Power Sources, 2013, 232, 74-78.	7.8	13
337	The structure and properties of (aluminum, oxygen) defect complexes in silicon. Journal of Applied Physics, 2013, 114, 063520.	2.5	10
338	Photoelectrochemical behavior of mixed ZnO and GaN (ZnO:GaN) thin films prepared by sputtering technique. Applied Surface Science, 2013, 270, 718-721.	6.1	4
339	Defect segregation at grain boundary and its impact on photovoltaic performance of CulnSe2. Applied Physics Letters, 2013, 102, .	3.3	50
340	Synthesis of single-phase Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films by ultrasonic spray pyrolysis. , 2013, , .		2
341	High-efficiency CdS/CdTe solar cells on commercial SnO <inf>2</inf> :F coated soda-lime glass substrates., 2013,,.		1
342	Core Structures of Dislocations within CdTe Grains. Materials Research Society Symposia Proceedings, 2013, 1526, 1.	0.1	3

#	Article	IF	Citations
343	The electronic properties of point defects in earth-abundant photovoltaic material Zn3P2: A hybrid functional method study. Journal of Applied Physics, 2013, 113, .	2.5	26
344	Structural, chemical and luminescent investigation of MBE- and CSS-deposited CdTe thin-films for solar cells. , 2013 , , .		1
345	Electron microscopy study of individual grain boundaries in Cu <inf>2</inf> ZnSnSe <inf>4</inf> thin films. , 2013, , .		O
346	Growth and characterization of close-spaced sublimation zinc phosphide thin films. , 2013, , .		0
347	First principles study of aluminum-oxygen complexes in silicon. , 2013, , .		O
348	EFFECTS OF INTERELECTRODE SPACING ON THE PROPERTIES OF MICROCRYSTALLINE SILICON ABSORBER AND SOLAR CELLS. Materials Research Society Symposia Proceedings, 2012, 1426, 105-110.	0.1	0
349	Electrostatic Potentials at Cu(In,Ga) <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Se</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Grain Boundaries: Experiment and Simulations. Physical Review Letters, 2012, 109, 095506.	7.8	39
350	Ambient Temperature and Pressure Mechanochemical Preparation of Nano-LiTiS2. ECS Electrochemistry Letters, 2012, 1, A21-A23.	1.9	13
351	ZnO:GaN thin films for photoelectrochemical water splitting application. Emerging Materials Research, 2012, 1, 201-204.	0.7	6
352	Synthesis and Characterization of Magnesium-Alloyed Hematite Thin Films. Journal of Electronic Materials, 2012, 41, 3100-3106.	2.2	7
353	Electronic and optical properties of Co <i>X</i> 204 (<i>X</i> ꀉ= Al, Ga, In) alloys. Applied Physics Letters, 2012, 100, .	3.3	15
354	Real time and post-deposition optical analysis of interfaces in CdTe solar cells. , 2012, , .		2
355	New Polytypoid SnO ₂ (ZnO:Sn) _{<i>m</i>} Nanowire: Characterization and Calculation of Its Electronic Structure. Journal of Physical Chemistry C, 2012, 116, 5009-5013.	3.1	13
356	Unusual nonlinear strain dependence of valence-band splitting in ZnO. Physical Review B, 2012, 86, .	3.2	11
357	In <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn></mml:mn></mml:msub></mml:math> O <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>3.2</td><td>23</td></mml:mrow<></mml:msub></mml:math>	3.2	23
358	/s commitmes 3 c/mmil:ms c/mmil:ms.ubs c/mmil:maths and ZnO. Physical Review B, 2012, 86,. Possible effects of oxygen in Te-rich Σ3 (112) grain boundaries in CdTe. Solid State Communications, 2012, 152, 1744-1747.	1.9	27
359	Strong asymmetrical doping properties of spinel CoAl2O4. Journal of Applied Physics, 2012, 111, 093723.	2.5	6
360	Transmission electron microscopy of chalcogenide thin-film photovoltaic materials. Current Opinion in Solid State and Materials Science, 2012, 16, 39-44.	11.5	18

#	Article	IF	Citations
361	Origin of enhanced water adsorption at $\hat{a}\ddot{y}$ 11 \hat{A} 0 $\hat{a}\ddot{y}$ step edge on rutile TiO2(110) surface. Journal of Chemical Physics, 2012, 137, 114707.	3.0	8
362	Stability and electronic structures of Cu <inf>x</inf> S solar cell absorbers. , 2012, , .		4
363	The delocalized nature of holes in (Ga, N) cluster-doped ZnO. Journal of Physics Condensed Matter, 2012, 24, 415503.	1.8	4
364	Enhancing the Stability of CuO Thin-Film Photoelectrodes by Ti Alloying. Journal of Electronic Materials, 2012, 41, 3062-3067.	2.2	30
365	Controlled synthesis of aligned Ni-NiO core-shell nanowire arrays on glass substrates as a new supercapacitor electrode. RSC Advances, 2012, 2, 8281.	3.6	62
366	Crystal and electronic structures of Cu <i>x</i> S solar cell absorbers. Applied Physics Letters, 2012, 100, .	3.3	105
367	Titanium and magnesium Co-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2012, 111, 073502.	2.5	30
368	Origin of the diverse behavior of oxygen vacancies in ABO3 perovskites: A symmetry based analysis. Physical Review B, 2012, 85, .	3.2	28
369	A Novel Codoping Approach for Enhancing the Performance of LiFePO (sub) 4 (/sub) Cathodes. Advanced Energy Materials, 2012, 2, 1028-1032.	19.5	72
370	Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production. Jom, 2012, 64, 526-530.	1.9	1
371	Polarizationâ€Induced Charge Distribution at Homogeneous Zincblende/Wurtzite Heterostructural Junctions in ZnSe Nanobelts. Advanced Materials, 2012, 24, 1328-1332.	21.0	30
372	Kesterites and Chalcopyrites: A Comparison of Close Cousins. Materials Research Society Symposia Proceedings, 2011, 1324, 97.	0.1	53
373	Origin of charge separation in III-nitride nanowires under strain. Applied Physics Letters, 2011, 99, 262103.	3.3	6
374	Double-Hole-Mediated Coupling of Dopants and Its Impact on Band Gap Engineering in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 106, 066801.	7.8	134
375	Synthesis and characterization of titanium-alloyed hematite thin films for photoelectrochemical water splitting. Journal of Applied Physics, 2011, 110, .	2.5	28
376	Origin of Bonding between the SWCNT and the Fe ₃ O ₄ (001) Surface and the Enhanced Electrical Conductivity. Journal of Physical Chemistry Letters, 2011, 2, 2853-2858.	4.6	17
377	Understanding of defect physics in polycrystalline photovoltaic materials., 2011, , . Comparative study of the luminescence and intrinsic point defects in the kesterite Cu <mml:math< td=""><td></td><td>4</td></mml:math<>		4
378	xmlns:mml="http://www.w3.org/1998/Math/MathMt" display="inline"> <mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub> ZnSnS <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathMt"><mml:msub><mml:mrow></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:math> and chalcopyrite Cu(ln,Ga)Se <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathMt"><mml:msub><mml:mrow></mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub><td>3.2</td><td>202</td></mml:math>	3.2	202

#	Article	IF	CITATIONS
379	Ultrathin Coatings on Nano-LiCoO ₂ for Li-Ion Vehicular Applications. Nano Letters, 2011, 11, 414-418.	9.1	357
380	Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors. , 2011, , 213-239.		7
381	The effects of Bi alloying in Cu delafossites: A density functional theory study. Journal of Applied Physics, 2011, 109, .	2.5	17
382	Transmission electron microscopy study of dislocations and interfaces in CdTe solar cells. Thin Solid Films, 2011, 519, 7168-7172.	1.8	11
383	Prediction of the chemical trends of oxygen vacancy levels in binary metal oxides. Applied Physics Letters, 2011, 99, .	3.3	42
384	Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. Journal of Power Sources, 2011, 196, 3317-3324.	7.8	198
385	Extremely Durable Highâ€Rate Capability of a LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂ Cathode Enabled with Singleâ€Walled Carbon Nanotubes. Advanced Energy Materials, 2011, 1, 58-62.	19.5	74
386	Phase separation in Ga and N co-incorporated ZnO films and its effects on photo-response in photoelectrochemical water splitting. Thin Solid Films, 2011, 519, 5983-5987.	1.8	26
387	Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-lon Batteries. Journal of the Electrochemical Society, 2011, 158, Al298.	2.9	119
388	Synthesis and characterization of titanium doped hematite for photoelectrochemical water splitting. Proceedings of SPIE, 2011, , .	0.8	0
389	Density profiles in sputtered molybdenum thin films and their effects on sodium diffusion in Cu(ln <inf>X</inf> Ga <inf>1&\pmx2212;x</inf>)Se <inf>2</inf> photovoltaics. , 2011, , .		3
390	On the bandgap of hydrogenated nanocrystalline silicon thin films. , 2010, , .		6
391	First-principles study of iron segregation into silicon â´5 grain boundary. Journal of Applied Physics, 2010, 107, 093713.	2.5	10
392	Effects of substrate temperature and RF power on the formation of aligned nanorods in ZnO thin films. Jom, 2010, 62, 25-30.	1.9	6
393	Effect of substrate temperature on the photoelectrochemical responses of Ga and N co-doped ZnO films. Journal of Materials Science, 2010, 45, 5218-5222.	3.7	17
394	Conformal Surface Coatings to Enable High Volume Expansion Li″on Anode Materials. ChemPhysChem, 2010, 11, 2124-2130.	2.1	126
395	Nanostructured Fe ₃ O ₄ /SWNT Electrode: Binderâ€Free and Highâ€Rate Liâ€lon Anode. Advanced Materials, 2010, 22, E145-9.	21.0	556
396	Influence of gas ambient on the synthesis of co-doped ZnO:(Al,N) films for photoelectrochemical water splitting. Journal of Power Sources, 2010, 195, 5801-5805.	7.8	47

#	Article	IF	Citations
397	Effect of hydrogen dilution profiling on the microscopic structure of amorphous and nanocrystalline silicon mixed-phase solar cells. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	4
398	Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Applied Physics Letters, $2010, 96, .$	3.3	185
399	SiO <inf>2</inf> as barrier layer for Na out-diffusion from soda-lime glass. , 2010, , .		7
400	Amorphous copper tungsten oxide with tunable band gaps. Journal of Applied Physics, 2010, 108, 043502.	2.5	14
401	Electronic, structural, and magnetic effects of 3d transition metals in hematite. Journal of Applied Physics, 2010, 107, .	2.5	135
402	Improved current collection in WO ₃ :Mo/WO ₃ bilayer photoelectrodes. Journal of Materials Research, 2010, 25, 45-51.	2.6	31
403	Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. Journal of Materials Research, 2010, 25, 69-75.	2.6	56
404	Defect characterization by admittance spectroscopy techniques based on temperature-rate duality. , 2010, , .		0
405	Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2010, 114, 10598-10605.	3.1	126
406	Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mn> Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 <i>3</i> mml:m	ın 300 ın > (/mml:ms
407	Electrodeposited Aluminum-Doped α-Fe ₂ O ₃ Photoelectrodes: Experiment and Theory. Chemistry of Materials, 2010, 22, 510-517.	6.7	240
408	Microstructure and surface chemistry of nanoporous & $\#x201C$; black silicon& $\#x201D$; for photovoltaics., 2010,,.		3
409	Electrochemical deposition of copper oxide nanowires for photoelectrochemical applications. Journal of Materials Chemistry, 2010, 20, 6962.	6.7	91
410	Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO ₂ Nanotube Arrays. Nano Letters, 2010, 10, 4099-4104.	9.1	417
411	Investigation of potential and electric field profiles in cross sections of CdTe/CdS solar cells using scanning Kelvin probe microscopy. Journal of Applied Physics, 2010, 108, .	2.5	39
412	The effect of ZnO replacement by ZnMgO ON ZnO/CdS/Cu(In,Ga)Se <inf>2</inf> solar cells. , 2009, , .		0
413	Group-IIIA versus IIIB delafossites: Electronic structure study. Physical Review B, 2009, 80, .	3.2	69
414	Enhancing dopant solubility via epitaxial surfactant growth. Physical Review B, 2009, 80, .	3.2	18

#	Article	IF	CITATIONS
415	Symmetry-breaking-induced enhancement of visible light absorption in delafossite alloys. Applied Physics Letters, 2009, 94, 251907.	3.3	20
416	Impurity Study of Optical Properties in Fluorine-Doped Tin Oxide for Thin-Film Solar Cells. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	3
417	On the existence of Si–C double bonded graphene-like layers. Chemical Physics Letters, 2009, 479, 255-258.	2.6	39
418	Structure and effects of vacancies in $\hat{1}$ £3 (112) grain boundaries in Si. Journal of Applied Physics, 2009, 106, 113506.	2.5	20
419	CoAl2O4–Fe2O3 p-n nanocomposite electrodes for photoelectrochemical cells. Applied Physics Letters, 2009, 95, 022116.	3.3	32
420	Origin of electronic and optical trends in ternary <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>In</mml:mtext></mml:mrow><mml:mn>2 conducting oxides<mml:math .<="" 2009,="" 79,="" b,="" physical="" review="" td="" xmlns.=""><td><!--<del-->3.21:mn</td><td>> </td></mml:math></mml:mn></mml:msub></mml:mrow></mml:math>	<del 3.21:mn	>
421	Band Edge Electronic Structure of BiVO ₄ : Elucidating the Role of the Bi s and V d Orbitals. Chemistry of Materials, 2009, 21, 547-551.	6.7	624
422	Structural, electronic, and optical properties of the $\ln < \inf > 2 < \inf > 0 < \inf > 3 < \inf > (ZnO) < \inf > n < \inf > system.$		0
423	Ternary cobalt spinel oxides for solar driven hydrogen production: Theory and experiment. Energy and Environmental Science, 2009, 2, 774.	30.8	60
424	(Photo)electrochemical Characterization of Doped ZnO Electrodes. ECS Meeting Abstracts, 2009, , .	0.0	0
425	Doping asymmetry in wideâ€bandgap semiconductors: Origins and solutions. Physica Status Solidi (B): Basic Research, 2008, 245, 641-652.	1.5	187
426	Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications. Advanced Materials, 2008, 20, 3248-3253.	21.0	330
427	Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. Journal of Power Sources, 2008, 176, 387-392.	7.8	115
428	Grain-boundary physics in polycrystalline photovoltaic materials. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	0
429	Electronic, Energetic, and Chemical Effects of Intrinsic Defects and Fe-Doping of CoAl ₂ O ₄ : A DFT+ <i>U</i> Study. Journal of Physical Chemistry C, 2008, 112, 12044-12050.	3.1	75
430	Carrier concentration tuning of bandgap-reduced p-type ZnO films by codoping of Cu and Ga for improving photoelectrochemical response. Journal of Applied Physics, 2008, 103, 073504.	2.5	65
431	Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>WO</mml:mtext></mml:mrow><mml:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mrow><mml:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:< td=""><td>>3³/mml:r</td><td>nn⁹³/mml:m</td></mml:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:mn:<></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mrow></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mn:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	>3 ³ /mml:r	nn ⁹³ /mml:m
432	Electronic structure of ZnO:GaN compounds: Asymmetric bandgap engineering. Physical Review B, 2008, 78, .	3.2	93

#	Article	IF	CITATIONS
433	Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2008, 112, 5213-5220.	3.1	191
434	Room Temperature Ferromagnetism of FeCo-Codoped ZnO Nanorods Prepared by Chemical Vapor Deposition. IEEE Transactions on Magnetics, 2008, 44, 2681-2683.	2.1	5
435	Correlation of Hydrogen Dilution Profiling to Material Structure and Device Performance of Hydrogenated Nanocrystalline Silicon Solar Cells. Materials Research Society Symposia Proceedings, 2008, 1066, 1.	0.1	22
436	Optical Enhancement by Textured Back Reflector in Amorphous and Nanocrystalline Silicon Based Solar Cells. Materials Research Society Symposia Proceedings, 2008, 1101, 1.	0.1	4
437	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mil" display="inline"> <mml:mi> display="inline"><mml:mi> nr</mml:mi> mathvariant="normal">O</mml:mi> <mml:mn>3</mml:mn> <mml:mo stretchy="false">(</mml:mo> <mml:mi>ZnO</mml:mi> <mml:mi><mml:msub><mml:mo) 0.784314="" 1="" etqq1="" overlog<="" rgbt="" td="" tj=""><td>7.8 ck 10 Tf 5</td><td>63 0 567 Td (s</td></mml:mo)></mml:msub></mml:mi>	7.8 ck 10 Tf 5	63 0 567 Td (s
438	Revie ZnO nanocoral structures for photoelectrochemical cells. Applied Physics Letters, 2008, 93, 163117.	3.3	92
439	Effect of Copassivation of Cl and Cu on CdTe Grain Boundaries. Physical Review Letters, 2008, 101, 155501.	7.8	103
440	Comparative Study of Solid-Phase Crystallization of Amorphous Silicon Deposited by Hot-wire CVD, Plasma-Enhanced CVD, and Electron-Beam Evaporation. Materials Research Society Symposia Proceedings, 2007, 989, 4.	0.1	6
441	Atom Probe Analysis of Ill–V and Si-Based Semiconductor Photovoltaic Structures. Microscopy and Microanalysis, 2007, 13, 493-502.	0.4	47
442	Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. Physical Review B, 2007, 76, .	3.2	168
443	Atomic structure of In2O3–ZnO systems. Applied Physics Letters, 2007, 90, 261904.	3.3	32
444	Band gap narrowing of ZnO:N films by varying rf sputtering power in O[sub 2]â^•N[sub 2] mixtures. Journal of Vacuum Science & Technology B, 2007, 25, L23.	1.3	30
445	TEM study of Locations of Cu in CdTe Solar Cells. Materials Research Society Symposia Proceedings, 2007, 1012, 1.	0.1	7
446	The Mechanism of J-V "Roll-Over―in CdS/CdTe Devices. Materials Research Society Symposia Proceedings, 2007, 1012, 1.	0.1	4
447	Band gap reduction of ZnO for photoelectrochemical splitting of water. Proceedings of SPIE, 2007, , .	0.8	12
448	Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics, 2007, 102, .	2.5	114
449	Enhanced photoelectrochemical responses of ZnO films through Ga and N codoping. Applied Physics Letters, 2007, 91, .	3.3	144
450	Possible Approach to Overcome the Doping Asymmetry in Wideband Gap Semiconductors. Physical Review Letters, 2007, 98, 135506.	7.8	204

#	Article	IF	CITATIONS
451	Photoelectrochemical Properties of N-Incorporated ZnO Films Deposited by Reactive RF Magnetron Sputtering. Journal of the Electrochemical Society, 2007, 154, B956.	2.9	81
452	Electrically Benign Behavior of Grain Boundaries in Polycrystalline <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CuInSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Films Physical Review Letters, 2007, 99, 235504.	.7.8	192
453	Argon ion beam and electron beam-induced damage in Cu(In,Ga)Se2 thin films. Thin Solid Films, 2007, 515, 4681-4685.	1.8	11
454	Structural instability of Sn-doped In2O3 thin films during thermal annealing at low temperature. Thin Solid Films, 2007, 515, 6686-6690.	1.8	12
455	Grain-Boundary Physics in PolycrystallineCulnSe2Revisited: Experiment and Theory. Physical Review Letters, 2006, 96, 205501.	7.8	106
456	Synthesis and Characterization of Boron-Doped Single-Wall Carbon Nanotubes Produced by the Laser Vaporization Technique. Chemistry of Materials, 2006, 18, 2558-2566.	6.7	69
457	Atomic structure and electronic properties of c-Siâ^•a-Si:H heterointerfaces. Applied Physics Letters, 2006, 88, 121925.	3.3	39
458	Doping of ZnO by group-IB elements. Applied Physics Letters, 2006, 89, 181912.	3.3	275
459	Damage-Layer-Mediated H Diffusion During SiN:H Processing: A Comprehensive Model. , 2006, , .		3
460	Nanostructured manganese oxides as lithium battery cathode materials. Journal of Power Sources, 2006, 158, 659-662.	7.8	17
461	Physics of Solid-Phase Epitaxy of Hydrogenated Amorphous Silicon for Thin Film Si Photovoltaics. Materials Research Society Symposia Proceedings, 2006, 910, 5.	0.1	2
462	Impurity-induced phase stabilization of semiconductors. Applied Physics Letters, 2006, 89, 011907.	3.3	20
463	Microstructure of CdTe thin films after mixed nitric and phosphoric acids etching and (HgTe,) Tj ETQq1 1 0.78431	4 rgBT /Ov 1.8	verlock 10 T
464	Solid phase crystallization of hot-wire CVD amorphous silicon films. Materials Research Society Symposia Proceedings, 2005, 862, 1051.	0.1	12
465	Chemical fluctuation-induced nanodomains in Cu(In,Ga)Se2 films. Applied Physics Letters, 2005, 87, 121904.	3.3	61
466	The Structure and Passivation Effects of Double-Positioning Twin Boundaries in CdTe. Materials Research Society Symposia Proceedings, 2005, 865, 441.	0.1	О
467	Solid-State Nanocomposite Electrochromic Pseudocapacitors. Electrochemical and Solid-State Letters, 2005, 8, A188.	2.2	30
468	Passivation of double-positioning twin boundaries in CdTe. Journal of Applied Physics, 2004, 96, 320-326.	2.5	32

#	Article	IF	Citations
469	Electrochemical Transformation of SWNT/Nafion Composites. Electrochemical and Solid-State Letters, 2004, 7, A421.	2.2	11
470	Quasicrystals as cluster aggregates. Nature Materials, 2004, 3, 759-767.	27 . 5	131
471	Electrochemical deposition of mesostructured vanadium oxides and vanadophosphates. Journal of Materials Science Letters, 2003, 22, 489-490.	0.5	2
472	In-Situ Formation of ZnO Nanobelts and Metallic Zn Nanobelts and Nanodisks. Journal of Physical Chemistry B, 2003, 107, 9701-9704.	2.6	44
473	Formation of metallic zinc nanowires. Journal of Applied Physics, 2003, 93, 4807-4809.	2.5	46
474	Structure and effects of double-positioning twin boundaries in CdTe. Journal of Applied Physics, 2003, 94, 2976-2979.	2.5	66
475	Local Structural Variations in Al72Ni2OCo8 Decagonal Quasicrystals. Materials Research Society Symposia Proceedings, 2003, 805, 248.	0.1	0
476	Effects of Doping on the Growth of ZnO Nanostructures. Materials Research Society Symposia Proceedings, 2003, 776, 821.	0.1	0
477	Carbon impurities in MgB2. Journal of Applied Physics, 2002, 92, 7687-7689.	2.5	18
478	Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. Journal of Applied Physics, 2002, 92, 310-319.	2.5	194
479	Control of Doping by Impurity Chemical Potentials: Predictions forp-Type ZnO. Physical Review Letters, 2001, 86, 5723-5726.	7.8	362
480	A Theoretical Study of p-Type Doping of ZnO: Problems and Solutions. Materials Research Society Symposia Proceedings, 2001, 666, 261.	0.1	5
481	Cu(In,Ga)Se ₂ Thin-Film Evolution During Growth from (In,Ga) ₂ Se ₃ Precursors. Materials Research Society Symposia Proceedings, 2001, 668, 1.	0.1	8
482	Characterization of extended defects in polycrystalline CdTe thin films grown by close-spaced sublimation. Thin Solid Films, 2001, 389, 75-77.	1.8	27
483	Energetics and effects of planar defects in CdTe. Journal of Applied Physics, 2001, 90, 3952-3955.	2.5	45
484	Chemical Ordering inAl72Ni20Co8Decagonal Quasicrystals. Physical Review Letters, 2001, 86, 1542-1545.	7.8	42
485	Atomic structure of the quasicrystal Al72Ni20Co8. Nature, 2000, 403, 266-267.	27.8	99
486	Direct Imaging of Atomic Ordering in Undoped and Laâ€Doped Pb(Mg _{1/3} Nb _{2/3})O ₃ . Journal of the American Ceramic Society, 2000, 83, 181-88.	3.8	58

#	Article	IF	Citations
487	Structural model for theAl72Ni2OCo8decagonal quasicrystals. Physical Review B, 2000, 61, 14291-14294.	3.2	14
488	Structures of pure and Ca-segregated MgO (001) surfaces. Surface Science, 1999, 442, 251-255.	1.9	11
489	Direct Imaging of Local Chemical Disorder and Columnar Vacancies in Ideal Decagonal Al-Ni-Co Quasicrystals. Physical Review Letters, 1998, 81, 5145-5148.	7.8	92
490	Structures of polytypoids in AIN crystals containing oxygen. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 1027-1040.	0.6	12
491	The structures of inversion domain boundaries in AlN ceramics. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1005-1022.	0.6	8
492	Convergent-Beam Electron diffraction study of structure of \hat{l}^2 -Silicon Nitride. Physica Status Solidi A, 1996, 155, 289-297.	1.7	7
493	The Burgers vector of an edge dislocation in an Al70Co15Ni15decagonal quasicrystal determined by means of convergent-beam electron diffraction. Journal of Physics Condensed Matter, 1993, 5, L195-L200.	1.8	4
494	Transmission electron microscope observations of rectangular dislocation networks in an Al70Co15Ni15 decagonal quasicrystal. Journal of Materials Research, 1993, 8, 286-290.	2.6	7
495	High-temperature-deformation-introduced defects in an Al70Co15Ni5decagonal quasicrystal. Philosophical Magazine Letters, 1993, 67, 51-57.	1.2	10
496	Experimental observation and computer simulation of high-order Laue zone line patterns of Alâ€"Coâ€"Ni decagonal quasicrystals. Philosophical Magazine Letters, 1992, 65, 33-41.	1.2	10
497	Experimental observations of small-angle grain boundaries in the Al ₇₀ Co ₁₅ Ni ₁₅ decagonal quasicrystal. Philosophical Magazine Letters, 1992, 66, 253-258.	1.2	12
498	Burgers vector determination of dislocations in an Al70Co15Ni15decagonal quasicrystal. Philosophical Magazine Letters, 1992, 66, 197-201.	1.2	18
499	Transmission electron microscopic analysis of stacking faults in a decagonal Al-Co-Ni alloy. Philosophical Magazine Letters, 1991, 64, 21-27.	1.2	21
500	Investigation of the microstructure of $Cu(In,Ga)Se/sub\ 2/thin\ films\ used\ in\ high-efficiency\ devices.\ ,\ 0,\ ,\ .$		3
501	High-throughput approaches to optimization of crystal silicon surface passivation and heterojunction solar cells. , 0, , .		1
502	A comprehensive model of hydrogen transport into a solar cell during silicon nitride processing for fire-through metallization. , $\dot{0}$, , .		6
503	A Multifunctional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	0