
Mahima Swamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085272/publications.pdf Version: 2024-02-01

MAHIMA SWAMY

#	Article	IF	CITATIONS
1	Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 2016, 17, 712-720.	14.5	265
2	Epithelial decision makers: in search of the 'epimmunome'. Nature Immunology, 2010, 11, 656-665.	14.5	252
3	Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity, 2007, 26, 43-54.	14.3	229
4	A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation. Immunity, 2016, 44, 1091-1101.	14.3	183
5	Increased Sensitivity of Antigen-Experienced T Cells through the Enrichment of Oligomeric T Cell Receptor Complexes. Immunity, 2011, 35, 375-387.	14.3	153
6	Cholesterol and Sphingomyelin Drive Ligand-independent T-cell Antigen Receptor Nanoclustering. Journal of Biological Chemistry, 2012, 287, 42664-42674.	3.4	145
7	Butyrophilins: an emerging family of immune regulators. Trends in Immunology, 2012, 33, 34-41.	6.8	119
8	Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) for the Identification and Analysis of Multiprotein Complexes. Science Signaling, 2006, 2006, pl4-pl4.	3.6	115
9	A bispecific diabody directed against prostate-specific membrane antigen and CD3 induces T-cell mediated lysis of prostate cancer cells. Cancer Immunology, Immunotherapy, 2008, 57, 43-52.	4.2	74
10	T ell antigenâ€receptor stoichiometry: preâ€clustering for sensitivity. EMBO Reports, 2006, 7, 490-495.	4.5	73
11	Intestinal intraepithelial lymphocyte activation promotes innate antiviral resistance. Nature Communications, 2015, 6, 7090.	12.8	64
12	Different composition of the human and the mouse γδT cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. Journal of Experimental Medicine, 2007, 204, 2537-2544.	8.5	56
13	Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4376-4381.	7.1	56
14	Subproteomic analysis of metal-interacting proteins in human B cells. Proteomics, 2005, 5, 3614-3622.	2.2	49
15	Control of amino acid transport coordinates metabolic reprogramming in T-cell malignancy. Leukemia, 2017, 31, 2771-2779.	7.2	37
16	A native antibody-based mobility-shift technique (NAMOS-assay) to determine the stoichiometry of multiprotein complexes. Journal of Immunological Methods, 2007, 324, 74-83.	1.4	31
17	Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunology, 2020, 13, 721-731.	6.0	30
18	Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes. Immunology Letters, 2006, 104, 131-137.	2.5	20

MAHIMA SWAMY

#	Article	IF	CITATIONS
19	Structural characterization of the TCR complex by electron microscopy. International Immunology, 2010, 22, 897-903.	4.0	19
20	Differential antibody binding to the surface ÂÂTCR{middle dot}CD3 complex of CD4+ and CD8+ T lymphocytes is conserved in mammals and associated with differential glycosylation. International Immunology, 2008, 20, 1247-1258.	4.0	16
21	The short length of the extracellular domain of ζ is crucial for T cell antigen receptor function. Immunology Letters, 2008, 116, 195-202.	2.5	14
22	Tissue environment, not ontogeny, defines murine intestinal intraepithelial T lymphocytes. ELife, 2021, 10, .	6.0	14
23	The extracellular part of ζ is buried in the T cell antigen receptor complex. Immunology Letters, 2008, 116, 203-210.	2.5	12
24	Stoichiometry and intracellular fate of TRIM-containing TCR complexes. Cell Communication and Signaling, 2010, 8, 5.	6.5	12
25	Detection of protein complex interactions via a Blue Native-PAGE retardation assay. Analytical Biochemistry, 2009, 392, 177-179.	2.4	11
26	The 450ÂkDa TCR Complex has a Stoichiometry of αβγεΠεζζ. Scandinavian Journal of Immunology, 2008, 67, 418-420.	2.7	9
27	Loss of adenomatous polyposis coli function renders intestinal epithelial cells resistant to the cytokine IL-22. PLoS Biology, 2019, 17, e3000540.	5.6	9
28	IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nature Communications, 2021, 12, 4290.	12.8	8
29	Different composition of the human and the mouse γδT cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. Journal of Experimental Medicine, 2007, 204, 3049-3049.	8.5	7
30	Provocative exhibits at the Seventeen Gallery. Nature Immunology, 2011, 12, 1131-1133.	14.5	5
31	Segregation Models. Advances in Experimental Medicine and Biology, 2008, 640, 74-81.	1.6	4