S Masoud Masoud Nabavizadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9085009/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium/ melamine-based porous network thin film at oil/water interface as effective catalyst for reduction of p-nitrophenol to p-aminophenol and dye degradation. Microporous and Mesoporous Materials, 2022, 330, 111612.	4.4	10
2	Half-Sandwich Cyclometalated Rh ^{III} Complexes Bearing Thiolate Ligands: Biomolecular Interactions and <i>In Vitro</i> and <i>In Vivo</i> Evaluations. Inorganic Chemistry, 2022, 61, 2039-2056.	4.0	14
3	Fine-Tuning of Luminescence Properties of Cyclometalated Platinum(II) Complexes <i>via</i> Aminopyridine Derivatives. Organometallics, 2022, 41, 1325-1333.	2.3	3
4	Potent antiproliferative active agents: novel bis Schiff bases and bis spiro Î ² -lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking. Medicinal Chemistry Research, 2021, 30, 258-284.	2.4	17
5	Ligand-Controlled C _{sp} ² –H versus C _{sp} ³ –H Bond Formation in Cycloplatinated Complexes: A Joint Experimental and Theoretical Mechanistic Investigation. Inorganic Chemistry, 2021, 60, 1998-2008.	4.0	6
6	Selectivity and competition between N–H and C–H bond activation using an organoplatinum (II) complex. Applied Organometallic Chemistry, 2021, 35, e6234.	3.5	3
7	Collaboration of cyclometalated platinum complexes and metallic nanoclusters for rapid discrimination and detection of biogenic amines through a fluorometric paper-based sensor array. Sensors and Actuators B: Chemical, 2021, 334, 129582.	7.8	23
8	Selectivity in Competitive C _{sp²} –C _{sp³} versus C _{sp³} –C _{sp³} Reductive Eliminations at Pt(IV) Complexes: Experimental and Computational Approaches. Organometallics, 2021, 40, 2051-2063.	2.3	9
9	Tetranuclear Rollover Cyclometalated Organoplatinum-Rhenium Compound; C-I Oxidative Addition and C-C Reductive Elimination Using a Rollover Cycloplatinated Dimer. Dalton Transactions, 2021, 50, 15015-15026.	3.3	2
10	PtSn Nanoalloy Thin Films as Anode Catalysts in Methanol Fuel Cells. Inorganic Chemistry, 2020, 59, 10688-10698.	4.0	20
11	Synthesis and Characterization of Rh ^{III} –M ^{II} (M = Pt, Pd) Heterobimetallic Complexes Based on a Bisphosphine Ligand: Tandem Reactions Using Ethanol. Organometallics, 2020, 39, 3879-3891.	2.3	6
12	The history of organoplatinum chemistry in Iran: 40-year research. Journal of the Iranian Chemical Society, 2020, 17, 2683-2715.	2.2	7
13	Cytotoxicity, anticancer, and antioxidant properties of mono and bis-naphthalimido β-lactam conjugates. Medicinal Chemistry Research, 2020, 29, 1355-1375.	2.4	8
14	Investigations of antiproliferative and antioxidant activity of β-lactam morpholino-1,3,5-triazine hybrids. Bioorganic and Medicinal Chemistry, 2020, 28, 115408.	3.0	18
15	Facile activation of the C–I bond of primary alkyl halides by Pt(II) complexes having a benzothiazole ligand. Inorganica Chimica Acta, 2020, 506, 119535.	2.4	6
16	Discovery and mechanistic investigation of Pt-catalyzed oxidative homocoupling of benzene with PhI(OAc) ₂ . Dalton Transactions, 2020, 49, 2477-2486.	3.3	7
17	Pd/[C2NH2mim][Br] Thin Film Versus Pd/[C8mim][Cl] or Pd/[C8mim][BF4]: Catalytic Applications in Electrooxidation of Methanol, p-Nitrophenol Reduction and C–C Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3448-3475.	3.7	5
18	Ligand-Mediated C–Br Oxidative Addition to Cycloplatinated(II) Complexes and Benzyl-Me C–C Bond Reductive Elimination from a Cycloplatinated(IV) Complex. ACS Omega, 2020, 5, 28621-28631.	3.5	5

#	Article	IF	CITATIONS
19	Chelating and Bridging Roles of 2-(2-Pyridyl)benzimidazole and Bis(diphenylphosphino)acetylene in Stabilizing a Cyclic Tetranuclear Platinum(II) Complex. Inorganic Chemistry, 2019, 58, 14608-14616.	4.0	3
20	Luminescent mononuclear and dinuclear cycloplatinated (II) complexes comprising azide and phosphine ancillary ligands. Applied Organometallic Chemistry, 2019, 33, e5197.	3.5	2
21	Synthesis, structural characterization, and luminescence properties of mono- and di-nuclear platinum(II) complexes containing 2-(2-pyridyl)-benzimidazole. Inorganica Chimica Acta, 2019, 498, 119133.	2.4	4
22	ZIF-8 nanoparticles thin film at an oil–water interface as an electrocatalyst for the methanol oxidation reaction without the application of noble metals. New Journal of Chemistry, 2019, 43, 15811-15822.	2.8	23
23	Arene C–H bond activation and methane formation by a methylplatinum(<scp>ii</scp>) complex: experimental and theoretical elucidation of the mechanism. New Journal of Chemistry, 2019, 43, 8005-8014.	2.8	9
24	A double rollover cycloplatinated(<scp>ii</scp>) skeleton: a versatile platform for tuning emission by chelating and non-chelating ancillary ligand systems. Dalton Transactions, 2019, 48, 5713-5724.	3.3	17
25	Computational study of the C I bimetallic oxidative addition at Pt M (M = Ni, Pd and Pt) reaction centers. Polyhedron, 2019, 164, 35-40.	2.2	2
26	Catalytic applications of β-cyclodextrin/palladium nanoparticle thin film obtained from oil/water interface in the reduction of toxic nitrophenol compounds and the degradation of azo dyes. New Journal of Chemistry, 2019, 43, 6513-6522.	2.8	22
27	Effects of the number of cyclometalated rings and ancillary ligands on the rate of MeI oxidative addition to platinum(<scp>ii</scp>)–pincer complexes. Dalton Transactions, 2019, 48, 3422-3432.	3.3	8
28	Cycloplatinated(II) Derivatives of Mercaptopurine Capable of Binding Interactions with HSA/DNA. Inorganic Chemistry, 2019, 58, 16154-16170.	4.0	33
29	N-methylation versus oxidative addition using Mel in the reaction of organoplatinum(II) complexes containing pyrazine ligand. Journal of Organometallic Chemistry, 2019, 880, 232-240.	1.8	5
30	Influence of ancillary ligands on the photophysical properties of cyclometalated organoplatinum(<scp>ii</scp>) complexes. New Journal of Chemistry, 2018, 42, 8661-8671.	2.8	14
31	Carbon–Oxygen Bond Forming Reductive Elimination from Cycloplatinated(IV) Complexes. Organometallics, 2018, 37, 87-98.	2.3	22
32	Simple tuning of the luminescence properties of the double rollover cycloplatinated(<scp>ii</scp>) structure by halide ligands. New Journal of Chemistry, 2018, 42, 1337-1346.	2.8	17
33	Reaction of allyl bromide with cyclometallated platinum(II) complexes: Unusual kinetic behavior and a novel case of methyl and allyl C-C bond reductive elimination. Journal of Organometallic Chemistry, 2018, 856, 1-12.	1.8	5
34	Reaction of dimethylplatinum(II) complexes with PhCH ₂ CH ₂ Br: Comparative reactivity with CH ₃ CH ₂ Br and PhCH ₂ Br and synthesis of Pt(IV) complexes. Applied Organometallic Chemistry, 2018, 32, e3954.	3.5	2
35	Mechanism of Me–Re Bond Addition to Platinum(II) and Dioxygen Activation by the Resulting Pt–Re Bimetallic Center. Inorganic Chemistry, 2017, 56, 2145-2152.	4.0	10
36	Combined Kineticoâ€Mechanistic and Theoretical Elucidation of the Oxidative Addition of Iodomethane to Cycloplatinated(II) Complexes: Controlling the Rate of <i>trans/cis</i> Isomerization. European Journal of Inorganic Chemistry, 2017, 2017, 2682-2690.	2.0	12

#	Article	IF	CITATIONS
37	Photophysical properties of a series of cycloplatinated(<scp>ii</scp>) complexes featuring allyldiphenylphosphane. New Journal of Chemistry, 2017, 41, 3798-3810.	2.8	26
38	Phosphorescent heterobimetallic complexes involving platinum(<scp>iv</scp>) and rhenium(<scp>vii</scp>) centers connected by an unsupported μ-oxido bridge. Dalton Transactions, 2017, 46, 16077-16088.	3.3	16
39	Photophysical study on unsymmetrical binuclear cycloplatinated(<scp>ii</scp>) complexes. New Journal of Chemistry, 2017, 41, 13293-13302.	2.8	15
40	The influence of thiolate ligands on the luminescence properties of cycloplatinated(<scp>ii</scp>) complexes. Dalton Transactions, 2017, 46, 15919-15927.	3.3	25
41	Which is the Stronger Nucleophile, Platinum or Nitrogen in Rollover Cycloplatinated(II) Complexes?. Inorganic Chemistry, 2017, 56, 14706-14713.	4.0	11
42	Cycloplatinated(II) complexes containing bridging bis(diphenylphosphino)acetylene: Photophysical study. Journal of Luminescence, 2016, 179, 222-229.	3.1	10
43	Phenylpyrazolate cycloplatinated(II) complexes: Kinetics of oxidation to Pt(IV) complexes. Journal of Organometallic Chemistry, 2016, 815-816, 35-43.	1.8	16
44	Comparative study on the interaction of two binuclear Pt (II) complexes with human serum albumin: Spectroscopic and docking simulation assessments. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 323-334.	3.8	22
45	Newly designed luminescent di- and tetra-nuclear double rollover cycloplatinated(II) complexes. Journal of Organometallic Chemistry, 2016, 819, 216-227.	1.8	24
46	Anticancer activity assessment of two novel binuclear platinum (II) complexes. Journal of Photochemistry and Photobiology B: Biology, 2016, 161, 345-354.	3.8	27
47	Synthesis of diorganoplatinum(IV) complexes by the S S bond cleavage with platinum(II) complexes. Journal of Molecular Structure, 2016, 1125, 20-26.	3.6	5
48	Binuclear organoplatinum(II) complexes with double bis(diphenylphosphino)acetylene bridges: Synthesis, X-ray structure determination, electronic structures and DFT calculations. Journal of Organometallic Chemistry, 2016, 808, 34-41.	1.8	6
49	Study on the interaction of three structurally related cationic Pt(II) complexes with human serum albumin: importance of binding affinity and denaturing properties. Journal of the Iranian Chemical Society, 2016, 13, 617-630.	2.2	10
50	Theoretical investigation of the role of chelating biphosphine ligands in oxidative addition reactions of platinum complexes. Journal of the Iranian Chemical Society, 2015, 12, 1867-1874.	2.2	5
51	A kinetic approach to carbon–iodide bond activation by rollover cycloplatinated(II) complexes containing monodentate phosphine ligands. Journal of Organometallic Chemistry, 2015, 781, 47-52.	1.8	25
52	Behavior of the bischelate platinum(II) complexes [Pt(S^N)(C^N)] (S^NÂ=Âpyridine-2-thionate,) Tj ETQq0 0 0 rg Chemistry, 2015, 26, 961-969.	BT /Overlo 2.0	ock 10 Tf 50 1 4
53	C–H reductive elimination during the reaction of cycloplatinated(<scp>ii</scp>) complexes with pyridine-2-thione: kinetic follow up. RSC Advances, 2015, 5, 22692-22702.	3.6	17
54	Luminescence properties of some monomeric and dimeric cycloplatinated(<scp>ii</scp>) complexes	3.3	40

u</scp>) complexes containing biphosphine ligands. Dalton Transactions, 2015, 44, 15829-15842. 54

#	Article	IF	CITATIONS
55	Oxidation of a rollover cycloplatinated(<scp>ii</scp>) dimer by MeI: a kinetic study. RSC Advances, 2015, 5, 66534-66542.	3.6	21
56	Photophysical and DFT studies on cycloplatinated complexes: modification in luminescence properties by expanding of π-conjugated systems. RSC Advances, 2015, 5, 57581-57591.	3.6	34
57	Secondary kinetic deuterium isotope effect in oxidative addition reaction of cycloplatinated(II) complexes with MeI. Journal of Organometallic Chemistry, 2015, 791, 258-265.	1.8	19
58	Reactivity comparison of five-and six-membered cyclometalated platinum(<scp>ii</scp>) complexes in oxidative addition reactions. RSC Advances, 2015, 5, 85111-85121.	3.6	24
59	Study of the interaction between two newly synthesized cyclometallated platinum (II) complexes and human serum albumin: Spectroscopic characterization and docking simulation. Journal of Luminescence, 2015, 159, 139-146.	3.1	32
60	Comparison of coordination mode of some biphosphine ligands in cyclometalated organoplatinum(II) complexes. Journal of Organometallic Chemistry, 2014, 755, 93-100.	1.8	14
61	Anticancer and DNA Binding Activities of Platinum (IV) Complexes; Importance of Leaving Group Departure Rate. Applied Biochemistry and Biotechnology, 2014, 172, 2604-2617.	2.9	25
62	Bismuth(III) halides as halide source for preparation of dihaloplatinum(IV) complexes. Polyhedron, 2014, 77, 24-31.	2.2	7
63	Kinetico-mechanistic studies on CX (X=H, F, Cl, Br, I) bond activation reactions on organoplatinum(II) complexes. Coordination Chemistry Reviews, 2014, 279, 115-140.	18.8	83
64	Anticancer activity and DNA-binding properties of novel cationic Pt(II) complexes. International Journal of Biological Macromolecules, 2014, 66, 86-96.	7.5	48
65	Spectroscopic and Molecular Dynamics Studies on Binding of Dimethylplatinum(II) Complex Drug to Human Serum Albumin. Bulletin of the Chemical Society of Japan, 2014, 87, 1094-1100.	3.2	3
66	Application of variable-temperature kinetic experiments to oxidative addition reactions of dimethylplatinum(II) complexes with alkyl halides. Transition Metal Chemistry, 2013, 38, 699-703.	1.4	4
67	Bis(diphenylphosphino)acetylene as bifunctional ligand in cycloplatinated complexes: Synthesis, characterization, crystal structures and mechanism of Mel oxidative addition. Journal of Organometallic Chemistry, 2013, 745-746, 148-157.	1.8	22
68	Bridging and Chelating Roles of Bis(2-(diphenylphosphino)ethyl)phenylphosphine in Stabilizing Binuclear Platinum(II) Complexes. Organometallics, 2013, 32, 3850-3858.	2.3	14
69	Bismuth–Halide Oxidative Addition and Bismuth–Carbon Reductive Elimination in Platinum Complexes Containing Chelating Diphosphine Ligands. Inorganic Chemistry, 2013, 52, 13480-13489.	4.0	19
70	Theoretical Study of the Solvent Effect on the Methyltrioxorhenium/Hydrogen Peroxide System. Journal of Solution Chemistry, 2013, 42, 2137-2148.	1.2	2
71	Selectivity in metal–carbon bond protonolysis in p-tolyl- (or methyl)-cycloplatinated(ii) complexes: kinetics and mechanism of the uncatalyzed isomerization of the resulting Pt(ii) products. Dalton Transactions, 2013, 42, 13369.	3.3	41
72	Secondary Kinetic Isotope Effects in Oxidative Addition of Benzyl Bromide to Dimethylplatinum(II) Complexes. Organometallics, 2013, 32, 2593-2598.	2.3	33

#	Article	IF	CITATIONS
73	Substitution reactions of NN chelating atoms of organoplatinum (II) complexes with phosphorous donor reagents. Journal of Organometallic Chemistry, 2013, 725, 22-27.	1.8	3
74	Oxidative addition of MeI to some cyclometalated organoplatinum(II) complexes: Kinetics and mechanism. Journal of Organometallic Chemistry, 2012, 698, 53-61.	1.8	43
75	The mechanism of oxidative addition of iodine to a dimethylplatinum(II) complex. Journal of Organometallic Chemistry, 2012, 713, 60-67.	1.8	33
76	Kinetics and mechanism of oxidative addition of MeI to binuclear cycloplatinated complexes containing biphosphine bridges: Effects of ligands. Journal of Organometallic Chemistry, 2012, 715, 73-81.	1.8	30
77	Influence of anionic components of ionic liquid solvents on oxidative addition reactions of organoplatinum(ii) complexes with MeI. New Journal of Chemistry, 2012, 36, 1739.	2.8	11
78	Reactivity and Mechanism in the Oxidative Addition of Allylic Halides to a Dimethylplatinum(II) Complex. Organometallics, 2012, 31, 2357-2366.	2.3	25
79	The Anticancer Activity and HSA Binding Properties of the Structurally Related Platinum (II) Complexes. Applied Biochemistry and Biotechnology, 2012, 167, 861-872.	2.9	28
80	Theoretical investigation of the thermodynamics on monomerization of a rhenium(V) dimer with imidazole-based ligands. Polyhedron, 2012, 34, 163-170.	2.2	1
81	Assembly of Cyclometalated Platinum(II) Complexes via 1,1′-Bis(diphenylphosphino)ferrocene Ligand: Kinetics and Mechanisms. Organometallics, 2011, 30, 1466-1477.	2.3	27
82	Density functional studies of influences of Ni triad metals and solvents on oxidative addition of Mel to [M(CH3)2(NH3)2] complexes and C–C reductive elimination from [M(CH3)3(NH3)2I] complexes. Journal of Organometallic Chemistry, 2011, 696, 3351-3358.	1.8	21
83	Substitution reactions involving cyclometalated platinum(II) complexes: Kinetic investigations. Journal of Organometallic Chemistry, 2011, 696, 3564-3571.	1.8	19
84	Highly efficient epoxidation of alkenes with hydrogen peroxide catalyzed by tungsten hexacarbonyl supported on multi-wall carbon nanotubes. Transition Metal Chemistry, 2011, 36, 861-866.	1.4	6
85	Competition of methyltrioxorhenium (MTO) with osmium tetroxide (OsO4) for pyridines binding: Ligand binding assay. Polyhedron, 2011, 30, 814-820.	2.2	3
86	Oxidative Addition of Ethyl Iodide to a Dimethylplatinum(II) Complex: Unusually Large Kinetic Isotope Effects and Their Transition-State Implications. Organometallics, 2010, 29, 6359-6368.	2.3	44
87	Oxidative addition reaction of diarylplatinum(ii) complexes with Mel in ionic liquid media: a kinetic study. Dalton Transactions, 2010, 39, 7800.	3.3	29
88	Cyclometalated Cluster Complex with a Butterfly-Shaped Pt2Ag2 Core. Inorganic Chemistry, 2010, 49, 2721-2726.	4.0	41
89	Associative and Dissociative Mechanisms in the Formation of Phthalazine Bridged Organodiplatinum(II) Complexes. Inorganic Chemistry, 2010, 49, 8435-8443.	4.0	20
90	Assembly of Symmetrical or Unsymmetrical Cyclometalated Organoplatinum Complexes through a Bridging Diphosphine Ligand. Organometallics, 2010, 29, 4893-4899.	2.3	51

#	Article	IF	CITATIONS
91	Cyclometalated organoplatinum(ii) complexes: first example of a monodentate benzo[h]quinolyl ligand and a complex with bridging bis(diphenylphosphino)ethane. Dalton Transactions, 2010, 39, 11396.	3.3	53
92	Diorganoplatinum(ii) complexes with chelating PN ligand 2-(diphenylphosphinoamino)pyridine; synthesis and kinetics of the reaction with Mel. New Journal of Chemistry, 2010, 34, 495.	2.8	21
93	Steric and Solvent Effects on the Secondary Kinetic α-Deuterium Isotope Effects in the Reaction of Methyl Iodide with Organoplatinum(II) Complexes: Application of a Second-Order Technique in Measuring the Rates of Rapid Processes. Organometallics, 2010, 29, 82-88.	2.3	37
94	A Tetramethylplatinum(IV) Complex with 1,1′â€Bis(diphenylphosphanyl)ferrocene Ligands: Reaction with Trifluoroacetic Acid. European Journal of Inorganic Chemistry, 2009, 2009, 3814-3820.	2.0	22
95	Perchlorate selective membrane electrodes based on a platinum complex. Monatshefte Für Chemie, 2008, 139, 1439-1445.	1.8	10
96	Uncommon Solvent Effect in Oxidative Addition of Mel to a New Dinuclear Platinum Complex Containing a Platina(II)cyclopentane Moiety. European Journal of Inorganic Chemistry, 2008, 2008, 5099-5105.	2.0	22
97	Binuclear Cyclometalated Organoplatinum Complexes Containing 1,1′-Bis(diphenylphosphino)ferrocene as Spacer Ligand: Kinetics and Mechanism of Mel Oxidative Addition. Inorganic Chemistry, 2008, 47, 5441-5452.	4.0	91
98	Oxidative addition of n-alkyl halides to diimine–dialkylplatinum(ii) complexes: a closer look at the kinetic behaviors. Dalton Transactions, 2008, , 2414.	3.3	43
99	Aryl, methyl-diplatinum complexes each with a metal–metal donor–acceptor bond and bridging 2-diphenylphosphinopyridine (PN) ligands: general synthetic approach and mechanism of isomerization. Dalton Transactions, 2007, , 4715.	3.3	17
100	Development of a disposable sensor for electrocatalytic detection of guanine and ss-DNA using a modified sol–gel screen-printed carbon electrode. Electrochimica Acta, 2007, 52, 4798-4803.	5.2	19
101	Acidity of osmium tetroxide (OsO4) towards coordination with pyridine and its derivatives. Polyhedron, 2007, 26, 1476-1482.	2.2	8
102	Ligand substitution reaction at a binuclear organoplatinum(II) complex. Journal of Organometallic Chemistry, 2007, 692, 1990-1996.	1.8	15
103	Thermodynamics of coordination of pyridine and its substituted derivatives to osmium tetroxide. Journal of the Iranian Chemical Society, 2007, 4, 444-450.	2.2	2
104	Perchlorate selective membrane electrodes based on synthesized platinum(II) complexes for low-level concentration measurements. Sensors and Actuators B: Chemical, 2007, 120, 447-454.	7.8	23
105	Lewis Acidity of Methyltrioxorhenium(VII) (MTO) Based on the Relative Binding Strengths of N-Donors. Journal of the American Chemical Society, 2006, 128, 351-357.	13.7	30
106	Thermodynamic Study of the Binding of Methyltrioxorhenium with Pyridine and Its Derivatives in Benzene Solution. European Journal of Inorganic Chemistry, 2005, 2005, 2368-2375.	2.0	17
107	Solvent effect on the adduct formation of methyltrioxorhenium (MTO) and pyridine: enthalpy and entropy contributions. Dalton Transactions, 2005, , 2423.	3.3	23
108	Thermodynamic studies of the binding of bidentate nitrogen donors with methyltrioxorhenium (MTO) in CHCl3 solution. Dalton Transactions, 2005, , 1644.	3.3	23

#	Article	IF	CITATIONS
109	Secondary Kinetic Deuterium Isotope Effects in the Reaction of MeI with Organoplatinum(II) Complexes. Organometallics, 2005, 24, 2528-2532.	2.3	36
110	Oxidative Addition of Methyl Iodide to a New Type of Binuclear Platinum(II) Complex:Â a Kinetic Study. Inorganic Chemistry, 2005, 44, 8594-8601.	4.0	36
111	Organoplatinum(iv) tris-chelate complexes, each having a cyclic metallacarbonate ring: synthesis, characterization and kinetic studies of the formation. Dalton Transactions, 2004, , 619.	3.3	16
112	Kinetic and Equilibrium Studies of Reactions of N-Heterocycles with Dimeric and Monomeric Oxorhenium(V) Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 1911-1916.	2.0	14
113	Adduct Formation of Methyltrioxorhenium with Mono- and Bidentate Nitrogen Donors:  Formation Constants. Inorganic Chemistry, 2003, 42, 4204-4208.	4.0	33
114	Kinetics and mechanism of cleavage of the oxygen–oxygen bond in hydrogen peroxide and dibenzoyl peroxide by arylplatinum(ii) complexes. Dalton Transactions RSC, 2001, , 3430-3434.	2.3	45