
Alex L Chortos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extrusion <scp>3D</scp> printing of conjugated polymers. Journal of Polymer Science, 2022, 60, 486-503.	2.0	6
2	Design of Fully Controllable and Continuous Programmable Surface Based on Machine Learning. IEEE Robotics and Automation Letters, 2022, 7, 549-556.	3.3	3
3	Photoswitchable Covalent Adaptive Networks Based on Thiol–Ene Elastomers. ACS Applied Materials & Interfaces, 2022, 14, 4552-4561.	4.0	15
4	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64
5	Printing Reconfigurable Bundles of Dielectric Elastomer Fibers. Advanced Functional Materials, 2021, 31, 2010643.	7.8	63
6	3D Printing of Interdigitated Dielectric Elastomer Actuators. Advanced Functional Materials, 2020, 30, 1907375.	7.8	132
7	Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Mechanics Letters, 2019, 30, 100504.	2.0	30
8	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.	13.1	263
9	Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1986-1991.	3.3	107
10	A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 2018, 3, .	9.9	568
11	A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998-1003.	6.0	982
12	A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics, 2018, 1, 314-321.	13.1	469
13	Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.	7.3	47
14	Ultratransparent and stretchable graphene electrodes. Science Advances, 2017, 3, e1700159.	4.7	231
15	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501
16	Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano, 2017, 11, 7925-7937.	7.3	52
17	Pursuing prosthetic electronic skin. Nature Materials, 2016, 15, 937-950.	13.3	1,821
18	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	11.1	234

ALEX L CHORTOS

#	Article	IF	CITATIONS
19	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. Journal of the American Chemical Society, 2016, 138, 6020-6027.	6.6	453
20	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	13.7	1,030
21	Capacitance Characterization of Elastomeric Dielectrics for Applications in Intrinsically Stretchable Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4680-4686.	7.8	77
22	Pressure Sensors: A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring (Adv. Mater. 43/2015). Advanced Materials, 2015, 27, 6953-6953.	11.1	11
23	Fully biodegradable pressure sensor, viscoelastic behavior of PCS dielectric elastomer upon degradation. , 2015, , .		4
24	Highly Skin onformal Microhairy Sensor for Pulse Signal Amplification. Advanced Materials, 2015, 27, 634-640.	11.1	621
25	A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Advanced Materials, 2015, 27, 6954-6961.	11.1	544
26	A skin-inspired organic digital mechanoreceptor. Science, 2015, 350, 313-316.	6.0	708
27	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	5.8	749
28	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	8.3	487
29	Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics. Advanced Functional Materials, 2014, 24, 5427-5434.	7.8	424
30	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials, 2014, 26, 4253-4259.	11.1	200
31	A Threeâ€Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for Highâ€Performance Flexible Battery Electrodes. Advanced Energy Materials, 2014, 4, 1400207.	10.2	280
32	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	5.8	1,225
33	Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5, 5028.	5.8	418
34	A Rapid and Facile Soft Contact Lamination Method: Evaluation of Polymer Semiconductors for Stretchable Transistors. Chemistry of Materials, 2014, 26, 4544-4551.	3.2	101
35	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€Skin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001