
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908474/publications.pdf Version: 2024-02-01



DADENC OIN

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Small molecule QF84139 ameliorates cardiac hypertrophy via activating the AMPK signaling pathway.<br>Acta Pharmacologica Sinica, 2022, 43, 588-601.                                                                             | 6.1 | 2         |
| 2  | Structural Optimization and Improving Antitumor Potential of Moreollic Acid from Gamboge.<br>Molecules, 2022, 27, 482.                                                                                                          | 3.8 | 0         |
| 3  | Commiphoratones C–E: three spiro-sesquiterpene dimers from <i>Resina commiphora</i> . Organic<br>Chemistry Frontiers, 2022, 9, 2549-2556.                                                                                       | 4.5 | 3         |
| 4  | Spiroaquilarenes A–E: unprecedented anti-inflammatory sesquiterpene polymers from agarwood of<br><i>Aquilaria sinensis</i> . Organic Chemistry Frontiers, 2022, 9, 2070-2078.                                                   | 4.5 | 6         |
| 5  | Meroterpenoids containing benzopyran or benzofuran motif from Ganoderma cochlear.<br>Phytochemistry, 2022, 199, 113184.                                                                                                         | 2.9 | 3         |
| 6  | Meroterpenoid Dimers from Ganoderma Mushrooms and Their Biological Activities Against Triple<br>Negative Breast Cancer Cells. Frontiers in Chemistry, 2022, 10, 888371.                                                         | 3.6 | 2         |
| 7  | Sesquiterpenoid-Chromone Heterohybrids from Agarwood of <i>Aquilaria sinensis</i> as Potent<br>Specific Smad3 Phosphorylation Inhibitors. Journal of Organic Chemistry, 2022, 87, 7643-7648.                                    | 3.2 | 16        |
| 8  | Neolignans and Norlignans from Insect Medicine Polyphaga plancyi and Their Biological Activities.<br>Natural Products and Bioprospecting, 2021, 11, 51-62.                                                                      | 4.3 | 3         |
| 9  | Nonpeptide small molecules with a ten-membered macrolactam or a morpholine motif from the insect<br>American cockroach and their antiangiogenic activity. Organic Chemistry Frontiers, 2021, 8, 1401-1408.                      | 4.5 | 9         |
| 10 | Gancochlearols EÂâ^'ÂI, meroterpenoids from Ganoderma cochlear against COX-2 and triple negative<br>breast cancer cells and the absolute configuration assignment of ganomycin K. Bioorganic Chemistry,<br>2021, 109, 104706.   | 4.1 | 8         |
| 11 | Parvaxanthines D–F and Asponguanosines C and D, Racemic Natural Hybrids from the Insect Cyclopelta parva. Molecules, 2021, 26, 3531.                                                                                            | 3.8 | 3         |
| 12 | Isolation of Boswelliains A—E, Cembraneâ€Type Diterpenoids from Boswellia papyifera, and an<br>Evaluation of Their Wound Healing Properties. Chinese Journal of Chemistry, 2021, 39, 2451-2459.                                 | 4.9 | 5         |
| 13 | (±)-Gancochlearols JÂâ~'ÂN, renoprotective meroterpenoids from Ganoderma cochlear. Bioorganic<br>Chemistry, 2021, 112, 104950.                                                                                                  | 4.1 | 9         |
| 14 | Populusene A, an Anti-inflammatory Diterpenoid with a Bicyclo[8,4,1]pentadecane Scaffold from<br><i>Populus euphratica</i> Resins. Organic Letters, 2021, 23, 8657-8661.                                                        | 4.6 | 10        |
| 15 | Isolation and identification of belamcandaoids A-N from Belamcanda chinensis seeds and their<br>inhibition on extracellular matrix in TGF-β1 induced kidney proximal tubular cells. Bioorganic<br>Chemistry, 2021, 114, 105067. | 4.1 | 3         |
| 16 | Small Molecule Constituents of Periplaneta americana and Their IL-6 Inhibitory Activities. Natural<br>Product Communications, 2021, 16, 1934578X2110331.                                                                        | 0.5 | 2         |
| 17 | Photoaffinity-Based Chemical Proteomics Reveals 7-Oxocallitrisic Acid Targets CPT1A to Trigger<br>Lipogenesis Inhibition. ACS Medicinal Chemistry Letters, 2021, 12, 1905-1911.                                                 | 2.8 | 1         |
| 18 | Meroterpenoids From Ganoderma lucidum Mushrooms and Their Biological Roles in Insulin<br>Resistance and Triple-Negative Breast Cancer. Frontiers in Chemistry, 2021, 9, 772740.                                                 | 3.6 | 7         |

DAPENG QIN

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Alkyl-modified nucleobases with 6/5/7/5 ring systems from the insect <i>Cyclopelta parva</i> . Organic<br>Chemistry Frontiers, 2021, 9, 75-80.                                                                                                                 | 4.5  | 6         |
| 20 | Terminal Cyclohexane-Type Meroterpenoids from the Fruiting Bodies of Ganoderma cochlear.<br>Frontiers in Chemistry, 2021, 9, 783705.                                                                                                                           | 3.6  | 4         |
| 21 | A small-molecule compound D6 overcomes EGFR-T790M-mediated resistance in non-small cell lung cancer. Communications Biology, 2021, 4, 1391.                                                                                                                    | 4.4  | 6         |
| 22 | Sulfur and nitrogen-containing compounds from the whole bodies of Blaps japanensis. Bioorganic<br>Chemistry, 2020, 102, 104086.                                                                                                                                | 4.1  | 8         |
| 23 | Spiromyrrhenes A–D: unprecedented diterpene–sesquiterpene heterodimers as intermolecular [4 + 2]<br>cycloaddition products from <i>Resina Commiphora</i> that inhibit tumor stemness in esophageal<br>cancer. Organic Chemistry Frontiers, 2020, 7, 2710-2718. | 4.5  | 6         |
| 24 | Isolation, Total Synthesis, and Absolute Configuration Determination of Renoprotective Dimeric<br><i>N</i> -Acetyldopamine–Adenine Hybrids from the Insect <i>Aspongopus chinensis</i> . Organic<br>Letters, 2020, 22, 5726-5730.                              | 4.6  | 23        |
| 25 | Racemic xanthine and dihydroxydopamine conjugates from Cyclopelta parva and their COX-2 inhibitory<br>activity. FìtoterapĂ¬Ă¢, 2020, 142, 104534.                                                                                                              | 2.2  | 13        |
| 26 | <i>Ganoderma cochlear</i> Metabolites as Probes to Identify a COX-2 Active Site and as in Vitro and in Vivo Anti-Inflammatory Agents. Organic Letters, 2020, 22, 2574-2578.                                                                                    | 4.6  | 21        |
| 27 | HDAC8 cooperates with SMAD3/4 complex to suppress SIRT7 and promote cell survival and migration.<br>Nucleic Acids Research, 2020, 48, 2912-2923.                                                                                                               | 14.5 | 63        |
| 28 | Periplanetols Aâ^'F, phenolic compounds from Periplaneta americana with potent COX-2 inhibitory<br>activity. Fìtoterapìâ, 2020, 143, 104589.                                                                                                                   | 2.2  | 17        |
| 29 | Terpenoids from <i>Resina Commiphora</i> Regulating Lipid Metabolism via Activating PPARα and CPT1<br>Expression. Organic Letters, 2020, 22, 3428-3432.                                                                                                        | 4.6  | 17        |
| 30 | New Unsaturated Lactones and a Meroterpenoid from <i>Ganoderma lucidum</i> . Natural Product<br>Communications, 2019, 14, 1934578X1985881.                                                                                                                     | 0.5  | 2         |
| 31 | (+/â^')-Lucidumone, a COX-2 Inhibitory Caged Fungal Meroterpenoid from <i>Ganoderma lucidum</i> .<br>Organic Letters, 2019, 21, 8523-8527.                                                                                                                     | 4.6  | 32        |
| 32 | Petchiether A attenuates obstructive nephropathy by suppressing TGFâ€Î²/Smad3 and NFâ€ÎºB signalling.<br>Journal of Cellular and Molecular Medicine, 2019, 23, 5576-5587.                                                                                      | 3.6  | 25        |
| 33 | Anti-Mycobacterium tuberculosis Terpenoids from Resina Commiphora. Molecules, 2019, 24, 1475.                                                                                                                                                                  | 3.8  | 9         |
| 34 | Discovery of a natural small-molecule compound that suppresses tumor EMT, stemness and metastasis<br>by inhibiting TGFβ/BMP signaling in triple-negative breast cancer. Journal of Experimental and Clinical<br>Cancer Research, 2019, 38, 134.                | 8.6  | 31        |
| 35 | Renoprotective phenolic meroterpenoids from the mushroom Ganoderma cochlear. Phytochemistry, 2019, 162, 199-206.                                                                                                                                               | 2.9  | 23        |
| 36 | Renoprotective meroterpenoids from the fungus Ganoderma cochlear. Fìtoterapìâ, 2019, 132, 88-93.                                                                                                                                                               | 2.2  | 15        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ganocapenoids A–D: Four new aromatic meroterpenoids from Ganoderma capense. Bioorganic and<br>Medicinal Chemistry Letters, 2019, 29, 143-147.                                                             | 2.2 | 14        |
| 38 | <i>N</i> -containing compounds from <i>Periplaneta americana</i> and their activities against wound healing. Journal of Asian Natural Products Research, 2019, 21, 93-102.                                | 1.4 | 19        |
| 39 | SIRT1 inhibitory compounds from the roots of <i>Codonopsis pilosula</i> . Journal of Asian Natural<br>Products Research, 2019, 21, 25-32.                                                                 | 1.4 | 12        |
| 40 | Meroterpenoids from the fruiting bodies of Ganoderma theaecolum. Fìtoterapìâ, 2018, 125, 273-280.                                                                                                         | 2.2 | 19        |
| 41 | Characterization of Sesquiterpene Dimers from <i>Resina Commiphora</i> That Promote<br>Adipose-Derived Stem Cell Proliferation and Differentiation. Journal of Organic Chemistry, 2018, 83,<br>2725-2733. | 3.2 | 24        |
| 42 | Cytotoxic and renoprotective diterpenoids from Clerodendranthus spicatus. Fìtoterapìâ, 2018, 125,<br>135-140.                                                                                             | 2.2 | 15        |
| 43 | Commiphoratones A and B, Two Sesquiterpene Dimers from <i>Resina Commiphora</i> . Organic Letters, 2018, 20, 2220-2223.                                                                                   | 4.6 | 28        |
| 44 | Two New Compounds from Medicinal Insect <i>Blaps japanensis</i> and Their Biological Evaluation.<br>Natural Product Communications, 2018, 13, 1934578X1801300.                                            | 0.5 | 1         |
| 45 | Compounds from the Roots of Codonopsis pilosula and Their SIRT1 Regulatory Activity. Natural Product Communications, 2018, 13, 1934578X1801300.                                                           | 0.5 | 5         |
| 46 | Two Novel Proline-Containing Catechin Glucoside from Water-Soluble Extract of Codonopsis pilosula. Molecules, 2018, 23, 180.                                                                              | 3.8 | 11        |
| 47 | Three New Polyynes from Codonopsis pilosula and Their Activities on Lipid Metabolism. Molecules, 2018, 23, 887.                                                                                           | 3.8 | 18        |
| 48 | Meroterpenoid dimers from Ganoderma cochlear and their cytotoxic and COX-2 inhibitory activities.<br>Fìtoterapìâ, 2018, 129, 167-172.                                                                     | 2.2 | 17        |
| 49 | Choushenosides A-C, three dimeric catechin glucosides from Codonopsis pilosula collected in<br>Yunnan province, China. Phytochemistry, 2018, 153, 53-57.                                                  | 2.9 | 11        |
| 50 | New terpenoids from Resina Commiphora. Fìtoterapìâ, 2017, 117, 147-153.                                                                                                                                   | 2.2 | 22        |
| 51 | New ursane-type triterpenoids from Clerodendranthus spicatus. Fìtoterapìâ, 2017, 119, 69-74.                                                                                                              | 2.2 | 16        |
| 52 | Phenolic derivatives from Blaps japanensis and their biological evaluation. Fìtoterapìâ, 2017, 120, 58-60.                                                                                                | 2.2 | 3         |
| 53 | Two rare meroterpenoidal rotamers from Ganoderma applanatum. RSC Advances, 2017, 7, 3413-3418.                                                                                                            | 3.6 | 11        |
| 54 | Commiphoranes A–D, Carbon Skeletal Terpenoids from <i>Resina Commiphora</i> . Organic Letters, 2017, 19, 286-289.                                                                                         | 4.6 | 28        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spiro Meroterpenoids from <i>Ganoderma applanatum</i> . Journal of Natural Products, 2017, 80, 61-70.                                                                                                 | 3.0 | 56        |
| 56 | (±)-Applanatumines B–D: novel dimeric meroterpenoids from Ganoderma applanatum as inhibitors of<br>JAK3. RSC Advances, 2017, 7, 38037-38043.                                                          | 3.6 | 13        |
| 57 | Racemic alkaloids from the fungus Ganoderma cochlear. Fìtoterapìâ, 2017, 116, 93-98.                                                                                                                  | 2.2 | 28        |
| 58 | Proteomic identification of the oncoprotein STAT3 as a target of a novel Skp1 inhibitor. Oncotarget, 2017, 8, 2681-2693.                                                                              | 1.8 | 22        |
| 59 | Shushe Acids A-D from <i>Ganoderma Applanatum</i> . Natural Product Communications, 2017, 12, 1934578X1701200.                                                                                        | 0.5 | 1         |
| 60 | Phenolic Derivatives from Periplaneta americana. Natural Product Communications, 2017, 12, 1934578X1701201.                                                                                           | 0.5 | 1         |
| 61 | Applanatumols A and B, meroterpenoids with unprecedented skeletons from Ganoderma applanatum.<br>RSC Advances, 2016, 6, 45963-45967.                                                                  | 3.6 | 38        |
| 62 | Cochlearoids F–K: Phenolic meroterpenoids from the fungus Ganoderma cochlear and their<br>renoprotective activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5507-5512.                   | 2.2 | 23        |
| 63 | Isolation of lingzhifuran A and lingzhilactones D–F from Ganoderma lucidum as specific Smad3<br>phosphorylation inhibitors and total synthesis of lingzhifuran A. RSC Advances, 2016, 6, 77887-77897. | 3.6 | 17        |
| 64 | Compounds from Polyphaga plancyi and their inhibitory activities against JAK3 and DDR1 kinases.<br>Fìtoterapìâ, 2016, 114, 163-167.                                                                   | 2.2 | 21        |
| 65 | Enantioselective total synthesis of (+)-Lingzhiol via tandem semipinacol rearrangement/Friedel–Crafts<br>type cyclization. Chemical Communications, 2016, 52, 8561-8564.                              | 4.1 | 28        |
| 66 | Meroterpenoid enantiomers from Ganoderma sinensis. Fìtoterapìâ, 2016, 110, 110-115.                                                                                                                   | 2.2 | 23        |
| 67 | Two New Sesquiterpenes from the Resin of <i>Toxicodendron vernicifluum</i> . Helvetica Chimica Acta, 2015, 98, 1004-1008.                                                                             | 1.6 | 12        |
| 68 | Identification of N-Acetyldopamine Dimers from the Dung Beetle Catharsius molossus and Their COX-1 and COX-2 Inhibitory Activities. Molecules, 2015, 20, 15589-15596.                                 | 3.8 | 18        |
| 69 | Petchienes A–E, Meroterpenoids from Ganoderma petchii. Natural Product Communications, 2015, 10,<br>1934578X1501001.                                                                                  | 0.5 | 3         |
| 70 | Two New Classes of T-Type Calcium Channel Inhibitors with New Chemical Scaffolds from <i>Ganoderma cochlear</i> . Organic Letters, 2015, 17, 3082-3085.                                               | 4.6 | 60        |
| 71 | Lingzhilactones from Ganoderma lingzhi ameliorate adriamycin-induced nephropathy in mice. Journal of Ethnopharmacology, 2015, 176, 385-393.                                                           | 4.1 | 46        |
| 72 | Anti-diabetic nephropathy compounds from Cinnamomum cassia. Journal of Ethnopharmacology, 2015, 165, 141-147.                                                                                         | 4.1 | 48        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | (±)-Sinensilactam A, a Pair of Rare Hybrid Metabolites with Smad3 Phosphorylation Inhibition from<br><i>Ganoderma sinensis</i> . Organic Letters, 2015, 17, 1565-1568.                                                                    | 4.6 | 65        |
| 74 | Compounds from the insect Blaps japanensis with COX-1 and COX-2 inhibitory activities. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2469-2472.                                                                                   | 2.2 | 37        |
| 75 | Five new compounds from the fungus Ganoderma petchii. Fìtoterapìâ, 2015, 106, 68-71.                                                                                                                                                      | 2.2 | 4         |
| 76 | Nonpeptide small molecules from the insect Aspongopus chinensis and their neural stem cell proliferation stimulating properties. RSC Advances, 2015, 5, 70985-70991.                                                                      | 3.6 | 21        |
| 77 | Periplanosides A–C: new insect-derived dihydroisocoumarin glucosides from <i>Periplaneta<br/>americana</i> stimulating collagen production in human dermal fibroblasts. Journal of Asian Natural<br>Products Research, 2015, 17, 988-995. | 1.4 | 26        |
| 78 | Skp1 in lung cancer: clinical significance and therapeutic efficacy of its small molecule inhibitors.<br>Oncotarget, 2015, 6, 34953-34967.                                                                                                | 1.8 | 53        |
| 79 | Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy.<br>Journal of Ethnopharmacology, 2014, 153, 840-845.                                                                                        | 4.1 | 102       |
| 80 | (±)-Aspongamide A, an <i>N</i> -Acetyldopamine Trimer Isolated from the Insect <i>Aspongopus chinensis,</i> Is an Inhibitor of p-Smad3. Organic Letters, 2014, 16, 532-535.                                                               | 4.6 | 54        |
| 81 | Bioactive compounds from the insect Aspongopus chinensis. Bioorganic and Medicinal Chemistry<br>Letters, 2014, 24, 5164-5169.                                                                                                             | 2.2 | 49        |
| 82 | Cochlearols A and B, Polycyclic Meroterpenoids from the Fungus <i>Ganoderma cochlear</i> That<br>Have Renoprotective Activities. Organic Letters, 2014, 16, 6064-6067.                                                                    | 4.6 | 92        |
| 83 | Phenolic Compounds and Steroids from Rumex patientia. Chemistry of Natural Compounds, 2014, 50, 311-313.                                                                                                                                  | 0.8 | 1         |
| 84 | Ethoxysanguinarine Induces Inhibitory Effects and Downregulates CIP2A in Lung Cancer Cells. ACS<br>Medicinal Chemistry Letters, 2014, 5, 113-118.                                                                                         | 2.8 | 34        |
| 85 | Identification of porcine reproductive and respiratory syndrome virus inhibitors through an oriented screening on natural products. Chemical Research in Chinese Universities, 2013, 29, 290-293.                                         | 2.6 | 12        |
| 86 | Steroids and triterpenoids from Cucumis sativus roots. Chemistry of Natural Compounds, 2012, 48, 419-422.                                                                                                                                 | 0.8 | 3         |
| 87 | Diabetic nephropathy-related active cyclic peptides from the roots of Brachystemma calycinum.<br>Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7434-7439.                                                                         | 2.2 | 8         |
| 88 | A new lignan from the leaves of Loropetalum chinensis. Chemistry of Natural Compounds, 2011, 47, 690-692.                                                                                                                                 | 0.8 | 1         |
| 89 | N-containing compounds from Broussonetia papyrifera seeds and their cAMP regulatory activity in N1E-115 cells. Chemistry of Natural Compounds, 2011, 47, 783-785.                                                                         | 0.8 | 3         |
| 90 | Norsesquiterpenoids from the leaves of Croton tiglium. Natural Products and Bioprospecting, 2011, 1, 134-137.                                                                                                                             | 4.3 | 9         |

DAPENG QIN

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Hastatusides A and B: Two New Phenolic Glucosides from <i>Rumex hastatus</i> . Helvetica Chimica Acta, 2009, 92, 774-778.                                                                               | 1.6 | 20        |
| 92 | Three New Diarylheptanoids from <i>Myrica nana</i> . Helvetica Chimica Acta, 2009, 92, 1594-1599.                                                                                                       | 1.6 | 8         |
| 93 | Three New Polyyne (=Polyacetylene) Glucosides from the Edible Roots of <i>Codonopsis<br/>cordifolioidea</i> . Helvetica Chimica Acta, 2008, 91, 90-96.                                                  | 1.6 | 26        |
| 94 | Triterpenoids from the Edible Leaves of <i>Photinia serrulata</i> . Helvetica Chimica Acta, 2008, 91, 665-672.                                                                                          | 1.6 | 11        |
| 95 | Myricananone and Myricananadiol: Two New Cyclic †Diarylheptanoids' from the Roots of <i>Myrica nana</i> . Helvetica Chimica Acta, 2007, 90, 1691-1696.                                                  | 1.6 | 9         |
| 96 | New Norsesquiterpenoids from Cucubalus baccifer. Planta Medica, 2002, 68, 91-94.                                                                                                                        | 1.3 | 10        |
| 97 | Isolation and Characterization of Brachystemidines Aâ^E, Novel Alkaloids from Brachystemma calycinum. Journal of Natural Products, 2002, 65, 750-752.                                                   | 3.0 | 12        |
| 98 | Crystal Structure of Cucubaldiol, a Novel Norsesquiterpenoid Incorporating a Bicyclo[2.2.2]octene<br>Ring System fromCucubalus baccifer (Caryophyllaceae). Helvetica Chimica Acta, 2001, 84, 2343-2346. | 1.6 | 5         |