List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084516/publications.pdf Version: 2024-02-01

<u>Cedmã:n Rhitdã3n</u>

#	Article	IF	CITATIONS
1	Strategy for the formation of microalgae-bacteria aggregates in high-rate algal ponds. Environmental Technology (United Kingdom), 2023, 44, 1863-1876.	1.2	2
2	Feedback Control-Based StrategyÂApplied for Biohydrogen Production from Acid Cheese Whey. Waste and Biomass Valorization, 2023, 14, 447-460.	1.8	2
3	Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresource Technology, 2022, 346, 126456.	4.8	16
4	Biomass purge strategies to control the bacterial community and reactor stability for biohydrogen production from winery wastewater. International Journal of Hydrogen Energy, 2022, 47, 5891-5900.	3.8	9
5	Cyanide treatment of mining tailings using suspended biomass and moving bed biomass reactors. Environmental Science and Pollution Research, 2022, 29, 37458-37470.	2.7	4
6	Influence of the solids retention time on the formation of the microalgal-bacterial aggregates produced with municipal wastewater. Journal of Water Process Engineering, 2022, 46, 102617.	2.6	7
7	Influence of the initial proportion of carbohydrates, proteins, and lipids on biohydrogen production by dark fermentation: A multi-response optimization approach. International Journal of Hydrogen Energy, 2022, 47, 30128-30139.	3.8	7
8	Loop-mediated isothermal amplification-based electrochemical sensor for detecting SARS-CoV-2 in wastewater samples. Journal of Environmental Chemical Engineering, 2022, 10, 107488.	3.3	37
9	Study on manipulation of ruminal fermentation using a bioelectrochemical system. Journal of Animal Physiology and Animal Nutrition, 2022, , .	1.0	0
10	Experimental validation of an interval observer-based sensor fault detection strategy applied to a biohydrogen production dark fermenter. Journal of Process Control, 2022, 114, 131-142.	1.7	5
11	Kinetic characterization of microalgal-bacterial systems: Contributions of microalgae and heterotrophic bacteria to the oxygen balance in wastewater treatment. Biochemical Engineering Journal, 2021, 165, 107819.	1.8	22
12	Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane. Bioresource Technology, 2021, 319, 124168.	4.8	30
13	Evaluation and ranking of polymeric ion exchange membranes used in microbial electrolysis cells for biohydrogen production. Bioresource Technology, 2021, 319, 124182.	4.8	8
14	Surveillance of SARS-CoV-2 in sewage and wastewater treatment plants in Mexico. Journal of Water Process Engineering, 2021, 40, 101815.	2.6	68
15	Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresource Technology, 2021, 321, 124458.	4.8	57
16	H2S oxidation coupled to nitrate reduction in a two-stage bioreactor: Targeting H2S-rich biogas desulfurization. Waste Management, 2021, 120, 76-84.	3.7	17
17	Performance of native open cultures (winery effluents, ruminal fluid, anaerobic sludge and digestate) for medium-chain carboxylic acid production using ethanol and acetate. Journal of Water Process Engineering, 2021, 40, 101784.	2.6	10
18	Feedback control strategy for optimizing biohydrogen production from organic solid waste in a discontinuous process. International Journal of Hydrogen Energy, 2021, 46, 35831-35831.	3.8	5

#	Article	IF	CITATIONS
19	A review on the factors influencing biohydrogen production from lactate: The key to unlocking enhanced dark fermentative processes. Bioresource Technology, 2021, 324, 124595.	4.8	57
20	Polyhydroxyalkanoates from organic waste streams using purple non-sulfur bacteria. Bioresource Technology, 2021, 323, 124610.	4.8	24
21	Recent advances in biopolymers production from biomass and waste (RABP-2020). Bioresource Technology, 2021, 328, 124879.	4.8	2
22	Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 2021, 12, 1418-1433.	2.6	43
23	Role of xylose from acidic hydrolysates of agave bagasse during biohydrogen production. Water Science and Technology, 2021, 84, 656-666.	1.2	2
24	Thermophilic anaerobic digestion of winery effluents in a two-stage process and the effect of the feeding frequency on methane production. Chemosphere, 2021, 272, 129865.	4.2	13
25	Influence of wavelength photoperiods and N/P ratio on wastewater treatment with microalgae–bacteria. Water Science and Technology, 2021, 84, 712-724.	1.2	6
26	Thermophilic biogas production from microalgae-bacteria aggregates: biogas yield, community variation and energy balance. Chemosphere, 2021, 275, 129898.	4.2	21
27	Novel photo-microrespirometric method for the rapid determination of photosynthesis-irradiance (PI) curves in microalgal-bacterial systems. Algal Research, 2021, 58, 102414.	2.4	1
28	Nutrient influence on acidogenesis and native microbial community of Agave bagasse. Industrial Crops and Products, 2021, 170, 113751.	2.5	8
29	Energy and economic advantages of simultaneous hydrogen and biogas production in microbial electrolysis cells as a function of the applied voltage and biomass content. Sustainable Energy and Fuels, 2021, 5, 2003-2017.	2.5	12
30	Enhanced PHA Production with Mixed Cultures Using a Robust and Simple Controller. Waste and Biomass Valorization, 2020, 11, 277-290.	1.8	0
31	Microalgal–bacterial aggregates with flue gas supply as a platform for the treatment of anaerobic digestion centrate. Journal of Chemical Technology and Biotechnology, 2020, 95, 289-296.	1.6	2
32	Evaluation of the methane production rate from an acidogenic effluent generated in a two-stage process treating winery wastewater. Biomass Conversion and Biorefinery, 2020, 10, 987-995.	2.9	2
33	Biohydrogen production from winery effluents: control of the homoacetogenesis through the headspace gas recirculation. Journal of Chemical Technology and Biotechnology, 2020, 95, 544-552.	1.6	20
34	Comparison of suspended and granular cell anaerobic bioreactors for hydrogen production from acid agave bagasse hydrolyzates. International Journal of Hydrogen Energy, 2020, 45, 275-285.	3.8	21
35	Essential Nutrients for Improving the Direct Processing of Raw Lignocellulosic Substrates Through the Dark Fermentation Process. Bioenergy Research, 2020, 13, 349-357.	2.2	9
36	Standardized protocol for determination of biohydrogen potential. MethodsX, 2020, 7, 100754.	0.7	14

GermÃin Buitrón

#	Article	IF	CITATIONS
37	Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions. Renewable and Sustainable Energy Reviews, 2020, 119, 109602.	8.2	137
38	Hydrogen and methane production from microalgal biomass hydrolyzed in a discontinuous reactor inoculated with ruminal microorganisms. Biomass and Bioenergy, 2020, 143, 105825.	2.9	10
39	Characterization and anaerobic digestion of highly concentrated Mexican wine by-products and effluents. Water Science and Technology, 2020, 81, 190-198.	1.2	13
40	Swirling fluidization in an anoxic membrane bioreactor as an antifouling technique. Journal of Membrane Science, 2020, 600, 117856.	4.1	5
41	Biorecovery of Metals from a Stainless Steel Industrial Effluent through Denitrification Performed in a Novel Anaerobic Swirling Fluidized Membrane Bioreactor (ASFMBR). Industrial & Engineering Chemistry Research, 2020, 59, 2725-2735.	1.8	7
42	A comparison of biological, enzymatic, chemical and hydrothermal pretreatments for producing biomethane from Agave bagasse. Industrial Crops and Products, 2020, 145, 112160.	2.5	32
43	Feasibility of quaternary ammonium and 1,4-diazabicyclo[2.2.2]octane-functionalized anion-exchange membranes for biohydrogen production in microbial electrolysis cells. Bioelectrochemistry, 2020, 133, 107479.	2.4	9
44	Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. Journal of Biotechnology, 2020, 317, 39-47.	1.9	45
45	Fermentation of organic wastes and CO2 + H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. Journal of CO2 Utilization, 2020, 42, 101314.	3.3	18
46	Influence of So/Xo Ratio and Medium Composition on Anaerobic Biodegradability Test. , 2020, , 125-133.		0
47	Biodegradation of Phenolic Compounds with a Sequencing Batch Biofilter. , 2020, , 263-269.		1
48	Influence of Added Nutrients and Substrate Concentration in Biohydrogen Production from Winery Wastewaters Coupled to Methane Production. Applied Biochemistry and Biotechnology, 2019, 187, 140-151.	1.4	23
49	Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. International Journal of Hydrogen Energy, 2019, 44, 2289-2297.	3.8	47
50	Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Industrial Crops and Products, 2019, 139, 111555.	2.5	31
51	A standardized biohydrogen potential protocol: An international round robin test approach. International Journal of Hydrogen Energy, 2019, 44, 26237-26247.	3.8	23
52	A fast extremum-seeking approach for the methanisation of organic waste in an anaerobic bioreactor. IFAC-PapersOnLine, 2019, 52, 269-274.	0.5	5
53	Microbial Electrolysis Cell for Biohydrogen Production. , 2019, , 159-185.		16
54	Biogas Production from a Highly Organic Loaded Winery Effluent Through a Two-Stage Process. Bioenergy Research, 2019, 12, 714-721.	2.2	21

GermÃin Buitrón

#	Article	IF	CITATIONS
55	The hydraulic retention time influences the abundance of <i>Enterobacter, Clostridium</i> and <i>Lactobacillus</i> during the hydrogen production from food waste. Letters in Applied Microbiology, 2019, 69, 138-147.	1.0	39
56	Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains. Industrial Crops and Products, 2019, 137, 105-111.	2.5	33
57	A step-forward in the characterization of microalgal consortia: Microbiological and kinetic aspects. Biochemical Engineering Journal, 2019, 145, 170-176.	1.8	6
58	Biohydrogen production using a granular sludge membrane bioreactor. Fuel, 2019, 241, 954-961.	3.4	40
59	Fully aerobic bioscrubber for the desulfurization of H2S-rich biogas. Fuel, 2019, 241, 884-891.	3.4	49
60	Supported ionic liquid membrane based on [bmim][PF6] can be a promising separator to replace Nafion in microbial fuel cells and improve energy recovery: A comparative process evaluation. Journal of Membrane Science, 2019, 570-571, 215-225.	4.1	39
61	Bioelectrosynthesis of Methane Integrated With Anaerobic Digestion. , 2019, , 899-919.		4
62	Biohydrogen production by batch indoor and outdoor photo-fermentation with an immobilized consortium: A process model with Neural Networks. Biochemical Engineering Journal, 2018, 135, 1-10.	1.8	20
63	Use of solid phosphorus fractionation data to evaluate phosphorus release from waste activated sludge. Waste Management, 2018, 76, 90-97.	3.7	35
64	On the practical estimation of unknown inputs for polytopic LTI systems. IET Control Theory and Applications, 2018, 12, 466-476.	1.2	4
65	Kinetic characterization of Scenedesmus quadricauda under low irradiation conditions. Journal of Chemical Technology and Biotechnology, 2018, 93, 842-848.	1.6	3
66	Improvement of the bioelectrochemical hydrogen production from food waste fermentation effluent using a novel startâ€up strategy. Journal of Chemical Technology and Biotechnology, 2018, 93, 878-886.	1.6	21
67	Denitrification of metallurgic wastewater: mechanisms of inhibition by Fe, Cr and Ni. Journal of Chemical Technology and Biotechnology, 2018, 93, 440-449.	1.6	32
68	From mesophilic to thermophilic conditions: one-step temperature increase improves the methane production of a granular sludge treating agroindustrial effluents. Biotechnology Letters, 2018, 40, 569-575.	1.1	8
69	Comparison of two real-time optimization strategies to maximize the hydrogen production in a dark fermenter. IFAC-PapersOnLine, 2018, 51, 137-142.	0.5	Ο
70	Effect of the variation of the operating parameters in the production of methane from lignocellulosic waste. IFAC-PapersOnLine, 2018, 51, 639-643.	0.5	1
71	Diagnosis of undesired scenarios in hydrogen production by photo-fermentation. Water Science and Technology, 2018, 78, 1652-1657.	1.2	5
72	Co-digestion of microalga-bacteria biomass with papaya waste for methane production. Water Science and Technology, 2018, 78, 125-131.	1.2	6

#	Article	IF	CITATIONS
73	Decolourization of Direct Blue 2 by peroxidases obtained from an industrial soybean waste. Water S A, 2018, 44, .	0.2	5
74	Temporary feeding shocks increase the productivity in a continuous biohydrogen-producing reactor. Clean Technologies and Environmental Policy, 2018, 20, 1581-1588.	2.1	14
75	Experimental validation of online monitoring and optimization strategies applied to a biohydrogen production dark fermenter. Chemical Engineering Science, 2018, 190, 48-59.	1.9	14
76	Fully aerobic twoâ€step desulfurization process for purification of highly H ₂ Sâ€laden biogas. Journal of Chemical Technology and Biotechnology, 2018, 93, 3553-3561.	1.6	24
77	A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation. Applied Energy, 2017, 190, 813-823.	5.1	64
78	Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production. Chemosphere, 2017, 174, 253-259.	4.2	43
79	H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance. Chemosphere, 2017, 171, 379-385.	4.2	16
80	Influence of solar irradiance levels on the formation of microalgae-bacteria aggregates for municipal wastewater treatment. Algal Research, 2017, 27, 190-197.	2.4	93
81	Improvement of methane content in a hydrogenotrophic anaerobic digester via the proper operation of membrane module integrated into an external-loop. Bioresource Technology, 2017, 245, 1294-1298.	4.8	17
82	Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnology Advances, 2017, 35, 772-781.	6.0	218
83	Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate. Bioprocess and Biosystems Engineering, 2017, 40, 231-239.	1.7	21
84	Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chemical Engineering Journal, 2017, 307, 948-954.	6.6	51
85	Reduction of start-up time in a microbial fuel cell through the variation of external resistance. Energy Procedia, 2017, 142, 694-699.	1.8	13
86	Fermentative biohydrogen production in fixed bed reactors using ceramic and polyethylene carriers as supporting material. Energy Procedia, 2017, 142, 743-748.	1.8	8
87	Biohydrogen production from microalgae. , 2017, , 209-234.		19
88	Hydrolysis of microalgal biomass using ruminal microorganisms as a pretreatment to increase methane recovery. Bioresource Technology, 2017, 244, 100-107.	4.8	45
89	A Dynamic Model for Microalgae-Bacteria Aggregates Used for Wastewater Treatment. Lecture Notes in Civil Engineering, 2017, , 602-606.	0.3	1
90	Corrigendum to "Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen―[Renew Sustain Energy Rev 57 (2016) 879–891]. Renewable and Sustainable Energy Reviews, 2016, 66, 220.	8.2	0

#	Article	IF	CITATIONS
91	Robust observation strategy to estimate unknown inputs**This research was financed by CONACYT (project 100298) and PAPIIT-UNAM (project IN112114). IFAC-PapersOnLine, 2016, 49, 1199-1204.	0.5	0
92	Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium. Bioresource Technology, 2016, 221, 324-330.	4.8	42
93	Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal Research, 2016, 18, 341-351.	2.4	57
94	A mechanistic model supported by data-based classification models for batch hydrogen production with an immobilized photo-bacteria consortium. International Journal of Hydrogen Energy, 2016, 41, 22802-22811.	3.8	16
95	Effect of microalgae inoculation on the start-up of microalgae–bacteria systems treating municipal, piggery and digestate wastewaters. Water Science and Technology, 2016, 73, 687-696.	1.2	16
96	Characterization of oxidized carbon foil as a low-cost alternative to carbon felt-based electrodes in bioelectrochemical systems. Journal of Applied Electrochemistry, 2016, 46, 217-227.	1.5	9
97	Microalgae-bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology, 2016, 91, 2862-2870.	1.6	93
98	Investigating the effect of hydrogen sulfide impurities on the separation of fermentatively produced hydrogen by PDMS membrane. Separation and Purification Technology, 2016, 157, 222-228.	3.9	18
99	Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation. Bioresource Technology, 2016, 200, 342-349.	4.8	29
100	Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Applied Microbiology and Biotechnology, 2016, 100, 3371-3384.	1.7	81
101	Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen. Renewable and Sustainable Energy Reviews, 2016, 57, 879-891.	8.2	108
102	BIOSORPTION OF CD, CR, MN, AND PB FROM AQUEOUS SOLUTIONS BY Bacillus SP STRAINS ISOLATED FROM INDUSTRIAL WASTE ACTIVATE SLUDGE. TIP Revista Especializada En Ciencias QuÃmico-BiolÃ3gicas, 2016, 19, 5-14.	0.3	40
103	Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source. Journal of Hazardous Materials, 2016, 313, 112-121.	6.5	13
104	On-line maximization of biogas production in an anaerobic reactor using a pseudo-super-twisting controllerâ^—â^—Project financed by PAPIIT-UNAM IN112114 and CONACYT 245954 IFAC-PapersOnLine, 2015, 4 14-19.	180.5	5
105	Anaerobic digestion of mixed microalgae cultivated in secondary effluent under mesophilic and thermophilic conditions. Water Science and Technology, 2015, 72, 1398-1403.	1.2	8
106	Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent. Journal of Applied Electrochemistry, 2015, 45, 1223-1229.	1.5	71
107	Robust observation strategy to estimate the substrate concentration in the influent of a fermentative bioreactor for hydrogen production. Chemical Engineering Science, 2015, 129, 126-134.	1.9	13
108	Evaluation of different support materials used with a photo-fermentative consortium for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 17231-17238.	3.8	21

#	Article	IF	CITATIONS
109	On-line heuristic optimization strategy to maximize the hydrogen production rate in a continuous stirred tank reactor. Process Biochemistry, 2015, 50, 893-900.	1.8	16
110	Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium. Fuel, 2015, 159, 214-222.	3.4	86
111	Biohydrogen production from industrial wastewaters. Water Science and Technology, 2015, 71, 105-110.	1.2	29
112	Removal of p-nonylphenol isomers using nitrifying sludge in a membrane sequencing batch reactor. Chemical Engineering Journal, 2015, 281, 860-868.	6.6	11
113	Optimization of volatile fatty acids concentration for photofermentative hydrogen production by a consortium. International Journal of Hydrogen Energy, 2015, 40, 17212-17223.	3.8	19
114	Simultaneous biohydrogen production and purification in a double-membrane bioreactor system. International Journal of Hydrogen Energy, 2015, 40, 1690-1697.	3.8	64
115	Biohydrogen production from tequila vinasses using a fixed bed reactor. Water Science and Technology, 2014, 70, 1919-1925.	1.2	39
116	Biodegradation of Toilet Wastewaters Generated in Aircrafts. Journal of the Chinese Chemical Society, 2014, 61, 814-818.	0.8	4
117	Effect of Starvation upon Activity of Microorganisms Degrading 4â€Chlorophenol. Journal of the Chinese Chemical Society, 2014, 61, 785-790.	0.8	1
118	Effect of the Organic Matter to Ammonia Ratio on Aerobic Granulation during 4â€ <scp>C</scp> hlorophenol Degradation in a Sequencing Batch Reactor. Clean - Soil, Air, Water, 2014, 42, 428-433.	0.7	5
119	Performance of a Single-Chamber Microbial Fuel Cell Degrading Phenol: Effect of Phenol Concentration and External Resistance. Applied Biochemistry and Biotechnology, 2014, 174, 2471-2481.	1.4	40
120	Exploitation of anaerobic enriched mixed bacteria (AEMB) for the silver and gold nanoparticles synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 264-270.	2.3	35
121	A cost-effective strategy for the bio-prospecting of mixed microalgae with high carbohydrate content: Diversity fluctuations in different growth media. Bioresource Technology, 2014, 163, 370-373.	4.8	40
122	The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures. Journal of Biotechnology, 2014, 182-183, 11-18.	1.9	52
123	Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors. International Journal of Hydrogen Energy, 2014, 39, 14234-14239.	3.8	37
124	Membrane biofouling mechanism in an aerobic granular reactor degrading 4-chlorophenol. Water Science and Technology, 2014, 69, 1759-1767.	1.2	7
125	Hydrogen and methane production via a two-stage processes (H 2 -SBRÂ+ÂCH 4 -UASB) using tequila vinasses. International Journal of Hydrogen Energy, 2014, 39, 19249-19255.	3.8	93
126	Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. Journal of Chemical Technology and Biotechnology, 2014, 89, 143-149.	1.6	59

GermÃin Buitrón

#	Article	IF	CITATIONS
127	Azo dye decolorization assisted by chemical and biogenic sulfide. Journal of Hazardous Materials, 2013, 250-251, 462-468.	6.5	37
128	Kinetic and Physiological Evaluation of Ammonium and Nitrite Oxidation Processes in Presence of 2-Chlorophenol. Applied Biochemistry and Biotechnology, 2013, 169, 990-1000.	1.4	11
129	Performance Evaluation of a Low-Cost Microbial Fuel Cell Using Municipal Wastewater. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	20
130	Improvement of the robustness of solar photo-Fenton processes using chemometric techniques for the decolorization of azo dye mixtures. Journal of Environmental Management, 2013, 131, 66-73.	3.8	11
131	Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosensors and Bioelectronics, 2013, 50, 373-381.	5.3	24
132	Hydrogen production from acid and enzymatic oat straw hydrolysates in an anaerobic sequencing batch reactor: Performance and microbial population analysis. International Journal of Hydrogen Energy, 2013, 38, 13884-13894.	3.8	47
133	Biodegradation of 4-methylaniline in a sequencing batch reactor. Water Science and Technology, 2012, 65, 1081-1086.	1.2	4
134	Real-time optimization of a fed-batch bioreactor with substrate inhibition using extremum-seeking. , 2012, , .		1
135	A simple output-feedback controller for fed-batch cultures of microbial strains with overflow metabolism. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 934-939.	0.4	2
136	Biodegradation of nonylphenols using nitrifying sludge, 4-chlorophenol-adapted consortia and activated sludge in liquid and solid phases. Environmental Technology (United Kingdom), 2012, 33, 1727-1737.	1.2	8
137	Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. International Journal of Hydrogen Energy, 2012, 37, 13288-13295.	3.8	80
138	Comparison of the Performance of Membrane and Conventional Sequencing Batch Reactors Degrading 4-Chlorophenol. Water, Air, and Soil Pollution, 2012, 223, 2083-2091.	1.1	7
139	Evaluation of three reagent dosing strategies in a photo-Fenton process for the decolorization of azo dye mixtures. Journal of Hazardous Materials, 2012, 217-218, 293-300.	6.5	19
140	Time-Optimal Output Feedback Controller for Toxic Wastewater Treatment in a Fed-batch Bioreactor. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 3812-3817.	0.4	1
141	Degradation of azo dye mixtures through sequential hybrid systems: Evaluation of three advanced oxidation processes for the pre-treatment stage. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 223, 103-110.	2.0	19
142	Biodegradation kinetics of a mixture of phenols in a sequencing batch moving bed biofilm reactor under starvation and shock loads. Journal of Chemical Technology and Biotechnology, 2011, 86, 669-674.	1.6	17
143	Practical automatic control of a sequencing batch reactor for toxic wastewater treatment. Water Science and Technology, 2011, 63, 782-788.	1.2	4
144	Kinetic characterization and modeling simplification of an anaerobic sulfate reducing batch process. Journal of Chemical Technology and Biotechnology, 2010, 85, 453-459.	1.6	4

9

#	Article	IF	CITATIONS
145	Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: Effect of initial substrate concentration, temperature and hydraulic retention time. Bioresource Technology, 2010, 101, 9071-9077.	4.8	156
146	Solar photoassisted advanced oxidation process of azo dyes. Water Science and Technology, 2009, 59, 965-972.	1.2	5
147	Controlled operation of a membrane SBR for inhibitory wastewater treatment. Water Science and Technology, 2009, 60, 655-661.	1.2	4
148	Treatment of fatty solid waste from the meat industry in an anaerobic sequencing batch reactor: start-up period and establishment of the design criteria. Water Science and Technology, 2009, 60, 2245-2251.	1.2	11
149	Effect of Starvation and Shock Loads on the Biodegradation of 4-Chlorophenol in a Discontinuous Moving Bed Biofilm Reactor. Applied Biochemistry and Biotechnology, 2009, 158, 222-230.	1.4	13
150	Acclimatization model of an aerobic bioreactor for the treatment of toxic wastewater. Simulation Modelling Practice and Theory, 2009, 17, 680-691.	2.2	3
151	Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor. Bioprocess and Biosystems Engineering, 2008, 31, 307-313.	1.7	7
152	Effect of loading rate on TOC consumption efficiency in a sulfate reducing process: sulfide effect in batch culture. Journal of Chemical Technology and Biotechnology, 2008, 83, 1648-1657.	1.6	5
153	Automation of the acclimation phase in a sequencing batch reactor using dissolved oxygen regulation. Biotechnology Progress, 2008, 24, 1067-1074.	1.3	2
154	Controlled backwashing in a membrane sequencing batch reactor used for toxic wastewater treatment. Journal of Membrane Science, 2008, 320, 185-190.	4.1	47
155	Experiments for modelling the biodegradation of wastewater in sequencing batch reactors. Mathematical and Computer Modelling of Dynamical Systems, 2008, 14, 3-15.	1.4	4
156	Anaerobic digestion of gelatinous water at laboratory and pilot scale and nitrogen inhibition. Water Science and Technology, 2008, 57, 1735-1741.	1.2	1
157	Performance of an optimally filled discontinuous bioreactor degrading 4-chlorophenol. Water Science and Technology, 2008, 57, 1991-1997.	1.2	1
158	AUTOMATION OF THE ACCLIMATION PHASE IN A SEQUENCING BATCH REACTOR DEGRADING INHIBITORY COMPOUNDS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 55-60.	0.4	0
159	ACCLIMATION MODEL OF AN AEROBIC BIOREACTOR FOR THE TREATMENT OF TOXIC WASTEWATER. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 67-72.	0.4	1
160	Evaluation of an optimal fill strategy to biodegrade inhibitory wastewater using an industrial prototype discontinuous reactor. Water Science and Technology, 2007, 55, 47-54.	1.2	1
161	The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems. FEMS Microbiology Letters, 2007, 266, 75-82.	0.7	30
162	On-line concentration measurements in wastewater using nonlinear deconvolution and partial least squares of spectrophotometric data. Water Science and Technology, 2006, 53, 457-463.	1.2	4

#	Article	IF	CITATIONS
163	Comparison of two types of inocula during acclimation and stable operation for nitrophenol biodegradation in an anaerobic-aerobic SBR. Water Science and Technology, 2006, 54, 39-45.	1.2	2
164	Effect of starvation on activity and viability of Pseudomonas aeruginosa ATCC 10145 degrading 4-chlorophenol. Water Science and Technology, 2006, 54, 163-168.	1.2	5
165	Optimal biodegradation of phenol and municipal wastewater using a controlled sequencing batch reactor. Water Science and Technology, 2006, 54, 273-280.	1.2	18
166	Biodegradation of high 4-chlorophenol concentrations in a discontinuous reactor fed with an optimally controlled influent flow rate. Water Science and Technology, 2006, 53, 261-268.	1.2	3
167	Degradation of acid orange 7 by a controlled anaerobic–aerobic sequencing batch reactor. Water Science and Technology, 2006, 54, 187-192.	1.2	10
168	Practical optimal control of fed-batch bioreactors for the waste water treatment. International Journal of Robust and Nonlinear Control, 2006, 16, 173-190.	2.1	21
169	Event-driven time-optimal control for a class of discontinuous bioreactors. Biotechnology and Bioengineering, 2006, 94, 803-814.	1.7	17
170	Optimal degradation of inhibitory wastewaters in a fed-batch bioreactor. Journal of Chemical Technology and Biotechnology, 2006, 81, 713-720.	1.6	11
171	CONTROL STRATEGIES FOR TREATING TOXIC WASTEWATER USING BIOREACTORS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 177-182.	0.4	1
172	Effect of co-substrate, biomass and sulfate concentration on the performance of a control strategy used to determine the anaerobic stage length of an anaerobic/aerobic SBR degrading p-nitrophenol. Water Science and Technology, 2005, 52, 441-447.	1.2	3
173	BIODEGRADATION OF TOXIC WASTEWATERS IN AN OPTIMALLY CONTROLLED DISCONTINUOUS REACTOR. Proceedings of the Water Environment Federation, 2005, 2005, 8019-8030.	0.0	0
174	Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-chlorophenol. Water Research, 2005, 39, 1015-1024.	5.3	62
175	Anaerobic/aerobic treatment of colorants present in textile effluents. Water Science and Technology, 2004, 50, 149-155.	1.2	58
176	Influence of the origin of the inoculum on the anaerobic biodegradability test. Water Science and Technology, 2004, 49, 53-59.	1.2	22
177	Variation of the microbial activity during the acclimation phase of a SBR system degrading 4-chlorophenol. Water Science and Technology, 2004, 50, 251-258.	1.2	43
178	Influence of the origin of the inoculum and the acclimation strategy on the degradation of 4-chlorophenol. Bioresource Technology, 2004, 94, 215-218.	4.8	37
179	Aerobic degradation of the azo dye acid red 151 in a sequencing batch biofilter. Bioresource Technology, 2004, 92, 143-149.	4.8	99
180	Practical Optimal Control for Fed-Batch Bioreactors. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 1437-1442.	0.4	1

#	Article	IF	CITATIONS
181	Oxidation-Reduction Potential as a Control Variable for the Anaerobic Stage during Anaerobic-Aerobic p-Nitrophenol Degradation. Biotechnology Progress, 2003, 19, 1822-1827.	1.3	5
182	Pharmaceutical Wastewater Treatment Using an Anaerobic/Aerobic Sequencing Batch Biofilter. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 2077-2088.	0.9	20
183	Influence of the initial substrate to microorganisms concentration ratio on the methanogenic inhibition test. Water Science and Technology, 2003, 48, 17-22.	1.2	17
184	Automated sequencing batch bioreactor under extreme peaks of 4-chlorophenol. Water Science and Technology, 2003, 47, 175-181.	1.2	18
185	Biodegradation of disperse blue 79 using sequenced anaerobic/aerobic biofilters. Water Science and Technology, 2001, 44, 159-166.	1.2	40
186	Degradation of p-nitrophenol in a batch biofilter under sequential anaerobic/aerobic environments. Water Science and Technology, 2001, 44, 151-157.	1.2	20
187	Strategies to enhance the biodegradation of toxic compounds using discontinuous processes. Water Science and Technology, 2001, 43, 283-290.	1.2	17
188	Production of activated carbon from petroleum coke and its application in water treatment for the removal of metals and phenol. Water Science and Technology, 2000, 42, 119-126.	1.2	27
189	Biotransformation of disperse blue 79 by an anaerobic sequencing batch biofilter. Water Science and Technology, 2000, 42, 317-320.	1.2	14
190	Start-up of a sequential anaerobic/aerobic batch reactor for the mineralization of p-nitrophenol. Water Science and Technology, 2000, 42, 289-292.	1.2	25
191	Observer-based time-optimal control of an aerobic SBR for chemical and petrochemical wastewater treatment. Water Science and Technology, 2000, 42, 163-170.	1.2	36
192	Use of a sequencing batch biofilter for degradation of azo dyes (acids and bases). Water Science and Technology, 2000, 42, 329-336.	1.2	11
193	Influence of So/Xo ratio on anaerobic activity test. Water Science and Technology, 1999, 40, 9.	1.2	8
194	Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 1998, 37, 371.	1.2	61
195	Effect of compression–decompression on helminth eggs present in sludge of a settling tank. Water Research, 1998, 32, 1708-1712.	5.3	6
196	Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 1998, 37, 371-378.	1.2	31
197	Respirometry based optimal control of an aerobic bioreactor for the industrial waste water treatment. Water Science and Technology, 1998, 38, 219-226.	1.2	6
198	Comparison between Three Secondary Effluents in Tertiary High Rate Filtration. Environmental Technology (United Kingdom), 1996, 17, 987-995.	1.2	2

#	Article	IF	CITATIONS
199	Characterization of the microorganisms from an acclimated activated sludge degrading phenolic compounds. Water Science and Technology, 1996, 34, 289-294.	1.2	40
200	Characterization of the microorganisms from an acclimated activated sludge degrading phenolic compounds. Water Science and Technology, 1996, 34, 289.	1.2	36
201	Enhancement of the Biodegradation Activity by the Acclimation of the Inoculum. Environmental Technology (United Kingdom), 1995, 16, 1175-1184.	1.2	17
202	Improvement and Control of the Microbial Activity of a Mixed Population for Degradation of Xenobiotic Compounds. Water Science and Technology, 1994, 29, 317-326.	1.2	14
203	Use of a sequencing batch reactor to study the biodegradation of 4-chlorophenol in soil. Biotechnology Letters, 1993, 7, 149-154.	0.5	5
204	Uptake rate and mineralization of hexadecane and naphthalene by a mixed aerobic culture. Water Research, 1993, 27, 847-853.	5.3	9
205	Control of phenol biodegradation by using CO ₂ evolution rate as an activity indicator. Environmental Technology (United Kingdom), 1993, 14, 227-236.	1.2	16
206	Transient shifts in hydraulic retention times improve the methane production from ruminal hydrolysates of agave bagasse. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	3