Aminaton Marto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084221/publications.pdf

Version: 2024-02-01

89 3,281 31 56
papers citations h-index g-index

91 91 91 1819 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 2014, 7, 5383-5396.	1.3	305
2	Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, 2015, 74, 873-886.	3.5	209
3	Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics, 2014, 80, 57-67.	3.3	171
4	Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences, 2015, 74, 2799-2817.	2.7	162
5	Application of several optimization techniques for estimating TBM advance rate in granitic rocks. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11, 779-789.	8.1	156
6	Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing, 2019, 23, 5913-5929.	3.6	151
7	Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement: Journal of the International Measurement Confederation, 2014, 55, 487-498.	5.0	115
8	Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology and the Environment, 2019, 78, 3799-3813.	3.5	114
9	Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering With Computers, 2016, 32, 109-121.	6.1	109
10	A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	106
11	Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences, 2015, 8, 9647-9665.	1.3	103
12	Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arabian Journal of Geosciences, 2015, 8, 10937-10950.	1.3	102
13	Tropical residual soil stabilization: A powder form material for increasing soil strength. Construction and Building Materials, 2017, 147, 827-836.	7.2	92
14	Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Engineering With Computers, 2018, 34, 307-317.	6.1	76
15	Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer. Environmental Earth Sciences, 2014, 72, 91-98.	2.7	66
16	Measuring the engineering properties of marine clay treated with disposed granite waste. Measurement: Journal of the International Measurement Confederation, 2019, 131, 50-60.	5.0	66
17	Effect of Non-Traditional Additives on Engineering and Microstructural Characteristics of Laterite Soil. Arabian Journal for Science and Engineering, 2014, 39, 6949-6958.	1.1	63
18	Identifying and assessing the critical criteria affecting decision-making for green roof type selection. Sustainable Cities and Society, 2018, 39, 772-783.	10.4	63

#	Article	IF	Citations
19	Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive. Acta Geotechnica, 2016, 11, 433-443.	5.7	59
20	Significance of Surface Eco-Protection Techniques for Cohesive Soils Slope in Selangor, Malaysia. Geotechnical and Geological Engineering, 2019, 37, 2007-2014.	1.7	56
21	Strength and Physico-chemical Characteristics of Fly Ash–Bottom Ash Mixture. Arabian Journal for Science and Engineering, 2015, 40, 2447-2455.	1.1	54
22	Utilization of Recycled Tiles and Tyres in Stabilization of Soils and Production of Construction Materials – A State-of-the-Art Review. KSCE Journal of Civil Engineering, 2018, 22, 3860-3874.	1.9	53
23	Sustainable Improvement of Clays Using Low-Carbon Nontraditional Additive. International Journal of Geomechanics, 2018, 18, .	2.7	52
24	A review on the geotechnical and engineering characteristics of marine clay and the modern methods of improvements. Malaysian Journal of Fundamental and Applied Sciences, 2017, 13, 825-831.	0.8	50
25	Prediction of blast-induced air overpressure: a hybrid Al-based predictive model. Environmental Monitoring and Assessment, 2015, 187, 666.	2.7	48
26	Analysis of strength development in non-traditional liquid additive-stabilized laterite soil from macro- and micro-structural considerations. Environmental Earth Sciences, 2015, 73, 1133-1141.	2.7	45
27	Sustainable Improvement of Marine Clay Using Recycled Blended Tiles. Geotechnical and Geological Engineering, 2018, 36, 3135-3147.	1.7	42
28	Effect of magnesium chloride solution on the physico-chemical characteristics of tropical peat. Environmental Earth Sciences, 2016, 75, 1.	2.7	40
29	Rock tensile strength prediction using empirical and soft computing approaches. Bulletin of Engineering Geology and the Environment, 2019, 78, 4519-4531.	3.5	40
30	Prediction of building damage induced by tunnelling through an optimized artificial neural network. Engineering With Computers, 2019, 35, 579-591.	6.1	36
31	3D prediction of tunneling-induced ground movements based on a hybrid ANN and empirical methods. Engineering With Computers, 2020, 36, 251-269.	6.1	32
32	Time-dependent physicochemical characteristics of Malaysian residual soil stabilized with magnesium chloride solution. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	30
33	Application of hybrid intelligent systems in predicting the unconfined compressive strength of clay material mixed with recycled additive. Transportation Geotechnics, 2021, 30, 100627.	4.5	24
34	Experimental study of surface failure induced by tunnel construction in sand. Engineering Failure Analysis, 2020, 118, 104897.	4.0	22
35	Bottom ash utilization: A review on engineering applications and environmental aspects. IOP Conference Series: Materials Science and Engineering, 2019, 527, 012006.	0.6	20
36	Shear Strength Improvement of Soft Clay Mixed with Tanjung Bin Coal Ash. APCBEE Procedia, 2013, 5, 116-122.	0.5	19

3

#	Article	IF	CITATIONS
37	EFFECT OF SODIUM SILICATE AS LIQUID BASED STABILIZER ON SHEAR STRENGTH OF MARINE CLAY. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	19
38	Bearing Capacity of Shallow Foundation's Prediction through Hybrid Artificial Neural Networks. Applied Mechanics and Materials, 0, 567, 681-686.	0.2	18
39	Shear Strength Parameters and Consolidation of Clay Reinforced with Single and Group Bottom Ash Columns. Arabian Journal for Science and Engineering, 2014, 39, 2641-2654.	1.1	18
40	Compaction and Plasticity Comparative Behaviour of Soft Clay Treated with Coarse and Fine Sizes of Ceramic Tiles. E3S Web of Conferences, 2018, 34, 01012.	0.5	16
41	Bearing capacity of soft soil model treated with end-bearing bottom ash columns. Environmental Earth Sciences, 2018, 77, 1.	2.7	14
42	The use of radial basis function and non-linear autoregressive exogenous neural networks to forecast multi-step ahead of time flood water level. International Journal of Advances in Intelligent Informatics, $2019, 5, 1$.	1.2	14
43	Stabilization of Marine Clay by Biomass Silica (Non-Traditional) Stabilizers. Applied Mechanics and Materials, 0, 695, 93-97.	0.2	13
44	Indirect measure of thermal conductivity of rocks through adaptive neuro-fuzzy inference system and multivariate regression analysis. Measurement: Journal of the International Measurement Confederation, 2015, 67, 71-77.	5.0	13
45	Simulation of Safe Height Embankment on Soft Ground Using Plaxis. APCBEE Procedia, 2013, 5, 152-156.	0.5	12
46	Micro-Level Analysis of Marine Clay Stabilised with Polyurethane. KSCE Journal of Civil Engineering, 2020, 24, 807-815.	1.9	12
47	Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for applied in Geotechnical Engineering Work. International Journal on Advanced Science, Engineering and Information Technology, 2012, 2, 168.	0.4	12
48	Shear strength and compressibility behaviour of lime-treated organic clay. KSCE Journal of Civil Engineering, 2016, 20, 1721-1727.	1.9	11
49	PROPERTIES OF COAL BOTTOM ASH FROM POWER PLANTS IN MALAYSIA AND ITS SUITABILITY AS GEOTECHNICAL ENGINEERING MATERIAL. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	10
50	Probabilistic air-overpressure simulation resulting from blasting operations. Environmental Earth Sciences, $2018, 77, 1$.	2.7	10
51	Sequestering Atmospheric CO2 Inorganically: A Solution for Malaysia's CO2 Emission. Geosciences (Switzerland), 2018, 8, 483.	2.2	10
52	Optimization of Leachate Treatment with Granular Biomedia: Feldspar and Zeolite. Indian Journal of Science and Technology, 2016, 9, .	0.7	9
53	Experimental Investigations on Behaviour of Strip Footing Placed on Chemically Stabilised Backfills and Flexible Retaining Walls. Arabian Journal for Science and Engineering, 2016, 41, 4115-4126.	1.1	9
54	Modelling Debris Flow Runout: A Case Study on the Mesilau Watershed, Kundasang, Sabah. Water (Switzerland), 2021, 13, 2667.	2.7	9

#	Article	IF	Citations
55	Critical State of Sand Matrix Soils. Scientific World Journal, The, 2014, 2014, 1-7.	2.1	8
56	Strength improvement of lime-treated clay with sodium chloride. Geotechnical Research, 2017, 4, 192-202.	1.4	8
57	Predicting the Effective Depth of Soil Stabilization for Marine Clay Treated by Biomass Silica. KSCE Journal of Civil Engineering, 2018, 22, 4316-4326.	1.9	8
58	Enhancement of Soft Soil Behaviour by using Floating Bottom Ash Columns. KSCE Journal of Civil Engineering, 2019, 23, 2453-2462.	1.9	7
59	SEGMENT'S JOINT IN PRECAST TUNNEL LINING DESIGN. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	6
60	A Review on Tunnel–Pile Interaction Applied by Physical Modeling. Geotechnical and Geological Engineering, 2020, 38, 3341-3362.	1.7	6
61	COMPARISONS ON THE RESPONSE OF SHALLOW GEOTHERMAL ENERGY PILE EMBEDDED IN SOFT AND FIRM SOILS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	5
62	Various effective factors on peak uplift resistance of pipelines in sand: a comparative study. International Journal of Geotechnical Engineering, 2020, 14, 820-827.	2.0	5
63	Response of shallow geothermal energy pile from laboratory model tests. IOP Conference Series: Earth and Environmental Science, 2015, 26, 012038.	0.3	4
64	The Soil-Water Characteristic Curve of Unsaturated Tropical Residual Soil. IOP Conference Series: Materials Science and Engineering, 2016, 136, 012013.	0.6	4
65	Stabilization Of Marine Clay Using Biomass Silica-Rubber Chips Mixture. IOP Conference Series: Materials Science and Engineering, 2016, 160, 012084.	0.6	4
66	Flood Forecasting of Malaysia Kelantan River using Support Vector Regression Technique. Computer Systems Science and Engineering, 2021, 39, 297-306.	2.4	4
67	STRENGTH CHARACTERISTIC OF BROWN KAOLIN TREATED WITH LIQUID POLYMER ADDITIVES. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	3
68	THERMAL PROPERTIES OF MALAYSIAN COHESIVE SOILS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	3
69	BEARING CAPACITY OF SOFT CLAY INSTALLED WITH SINGULAR AND GROUP OF ENCASED BOTTOM ASH COLUMNS. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	3
70	Eco-Friendly Sustainable Stabilization of Dredged Soft Clay Using Low-Carbone Recycled Additives. , $2019, 71-84$.		3
71	Evaluation of the Response of Buried Steel Pipelines Subjected to the Strike-slip Fault Displacement. Civil Engineering Journal (Iran), 2017, 3, 661-671.	3.9	3
72	LIQUEFACTION RESISTANCE OF SAND MATRIX SOILS. Jurnal Teknologi (Sciences and Engineering), 2015, 77,	0.4	2

#	Article	IF	CITATIONS
73	Effect of fines content on critical state parameters of sand matrix soils. AIP Conference Proceedings, 2016, , .	0.4	2
74	Control of pile movements induced by tunnelling using micropiles. International Journal of Physical Modelling in Geotechnics, 2018, 18, 191-207.	0.6	2
75	Comparison of Field Performance between Bamboo-Geotextile Composite Embankment and High Strength Geotextile Embankment. Advanced Materials Research, 2012, 587, 77-80.	0.3	1
76	SURFACE SETTLEMENT INDUCED BY TUNNELING IN GREENFIELD CONDITION THROUGH PHYSICAL MODELLING. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	1
77	UNCONFINED COMPRESSIVE STRENGTH AND MICROSTRUCTURE OF CLAY SOIL STABILISED WITH BIOMASS SILICA. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	1
78	COMPARISON OF SOIL INDEX PROPERTIES VALUE FOR DIFFERENT PRE-DRYING CONDITIONS ON CLAYEY SOIL. Jurnal Teknologi (Sciences and Engineering), 2015, 76, .	0.4	1
79	SOFT SOIL IMPROVEMENT USING CHEMICAL-RUBBER CHIPS MIXTURE. Jurnal Teknologi (Sciences and) Tj ETQq1	1 8.78431	4 ₁ rgBT /Over
80	INVESTIGATION ON THE MECHANICS OF PRECAST SEGMENT TUNNEL LINING. Jurnal Teknologi (Sciences and) Tj E	ETQ.4000	rgBT /Overlo
81	Comparison between Cement and Concrete Waste on the Strength Behaviour of Marine Clay Treated with Coal Ash. MATEC Web of Conferences, 2018, 250, 01003.	0.2	1
82	Unconfined compressive strength of compacted marine clay treated with magnesium chloride. AIP Conference Proceedings, 2021, , .	0.4	1
83	Flood Disaster and Early Warning: Application of ANFIS for River Water Level Forecasting. Kinetik, 0, , 1-10.	0.1	1
84	Settlement Behavior of Embankment Reinforced with High Strength Geotextile at the Interface. Advanced Science Letters, 2013, 19, 2597-2603.	0.2	1
85	UTILIZATION OF SUGARCANE BAGASSE ASH FOR STABILIZATION / SOLIDIFICATION OF LEAD-CONTAMINATED SOILS. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	0.4	0
86	ROCK BEARING RESISTANCE OF BORED PILES SOCKETED INTO ROCK. Jurnal Teknologi (Sciences and) Tj ETQq0 C	OrgBT /O	verlock 10 Ti
87	UNDRAINED SHEAR STRENGTH OF SOFT CLAY MIXED WITH DIFFERENT PERCENTAGES OF LIME AND SILICA FUME. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
88	Microzonation Analysis of Cohesionless and Cohesive Soil. MATEC Web of Conferences, 2017, 103, 07006.	0.2	0
89	3D Numerical Model of Soil-Tunnel Interaction Induced by Segment Joint Parameter. Journal of Physics: Conference Series, 2018, 1049, 012044.	0.4	O