Victor Flors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9084136/publications.pdf

Version: 2024-02-01

44069 28297 11,767 106 48 105 citations h-index g-index papers 112 112 112 10833 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phosphateâ€induced resistance to pathogen infection in Arabidopsis. Plant Journal, 2022, 110, 452-469.	5.7	14
2	Customâ€made design of metabolite composition in <i>N. benthamiana</i> leaves using CRISPR activators. Plant Biotechnology Journal, 2022, 20, 1578-1590.	8.3	18
3	Induction of plant defenses: the added value of zoophytophagous predators. Journal of Pest Science, 2022, 95, 1501-1517.	3.7	17
4	Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content. Plant Science, 2022, 323, 111374.	3.6	5
5	Plant-feeding may explain why the generalist predator Euseius stipulatus does better on less defended citrus plants but Tetranychus-specialists Neoseiulus californicus and Phytoseiulus persimilis do not. Experimental and Applied Acarology, 2021, 83, 167-182.	1.6	8
6	Down-regulation of Fra a 1.02 in strawberry fruits causes transcriptomic and metabolic changes compatible with an altered defense response. Horticulture Research, 2021, 8, 58.	6.3	2
7	The response of citrus plants to the broad mite Polyphagotarsonemus latus (Banks) (Acari:) Tj ETQq1 1 0.784314	rgBT /Ove	rlock 10 Tf S
8	Mycorrhizal symbiosis primes the accumulation of antiherbivore compounds and enhances herbivore mortality in tomato. Journal of Experimental Botany, 2021, 72, 5038-5050.	4.8	40
9	The Induced Resistance Lexicon: Do's and Don'ts. Trends in Plant Science, 2021, 26, 685-691.	8.8	84
10	Exploring the use of scions and rootstocks from xeric areas to improve drought tolerance in Castanea sativa Miller. Environmental and Experimental Botany, 2021, 187, 104467.	4.2	12
11	Extracellular DNA as an elicitor of broad-spectrum resistance in Arabidopsis thaliana. Plant Science, 2021, 312, 111036.	3.6	15
12	Plant defense responses triggered by phytoseiid predatory mites (Mesostigmata: Phytoseiidae) are species-specific, depend on plant genotype and may not be related to direct plant feeding. BioControl, 2021, 66, 381-394.	2.0	8
13	Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Scientific Reports, 2021, 11, 20600.	3.3	11
14	Ménage à Trois: Unraveling the Mechanisms Regulating Plant–Microbe–Arthropod Interactions. Trends in Plant Science, 2020, 25, 1215-1226.	8.8	31
15	Biological and Molecular Control Tools in Plant Defense. Progress in Biological Control, 2020, , 3-43.	0.5	2
16	Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Science, 2020, 298, 110595.	3.6	27
17	Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant, Cell and Environment, 2020, 43, 1655-1668.	5.7	35
18	Role and mechanisms of callose priming in mycorrhiza-induced resistance. Journal of Experimental Botany, 2020, 71, 2769-2781.	4.8	56

#	Article	IF	CITATIONS
19	Arabidopsis Plants Sense Non-self Peptides to Promote Resistance Against Plectosphaerella cucumerina. Frontiers in Plant Science, 2020, 11, 529.	3.6	15
20	Oxylipin dynamics in <i>Medicago truncatula </i> in response to salt and wounding stresses. Physiologia Plantarum, 2019, 165, 198-208.	5.2	29
21	Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea. Frontiers in Plant Science, 2019, 10, 1162.	3.6	17
22	Hormone and secondary metabolite profiling in chestnut during susceptible and resistant interactions with Phytophthora cinnamomi. Journal of Plant Physiology, 2019, 241, 153030.	3.5	24
23	Accumulating evidences of callose priming by indole- 3- carboxylic acid in response to <i>Plectospharella cucumerina</i> . Plant Signaling and Behavior, 2019, 14, 1608107.	2.4	16
24	The olfactive responses of Tetranychus urticae natural enemies in citrus depend on plant genotype, prey presence, and their diet specialization. Journal of Pest Science, 2019, 92, 1165-1177.	3.7	14
25	Zoophytophagous mites can trigger plantâ€genotype specific defensive responses affecting potential prey beyond predation: the case of <i>Euseius stipulatus</i> and <i>Tetranychus urticae</i> in citrus. Pest Management Science, 2019, 75, 1962-1970.	3.4	21
26	Biosynthesis of IAA and its role as signal molecule in the phytopathogenic bacterium Pseudomonas savastanoi. FASEB Journal, 2019, 33, lb243.	0.5	0
27	Chemical priming of immunity without costs to plant growth. New Phytologist, 2018, 218, 1205-1216.	7. 3	67
28	Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Management Science, 2018, 74, 1286-1296.	3.4	48
29	Mycorrhizal tomato plants fine tunes the growthâ€defence balance upon N depleted root environments. Plant, Cell and Environment, 2018, 41, 406-420.	5.7	66
30	Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indoleâ€3â€carboxylic acid in response to ⟨i⟩Plectosphaerella cucumerina⟨li⟩ infection. Plant Journal, 2018, 96, 518-531.	5.7	34
31	Root metabolic plasticity underlies functional diversity in mycorrhizaâ€enhanced stress tolerance in tomato. New Phytologist, 2018, 220, 1322-1336.	7.3	107
32	Can Plant Defence Mechanisms Provide New Approaches for the Sustainable Control of the Two-Spotted Spider Mite Tetranychus urticae?. International Journal of Molecular Sciences, 2018, 19, 614.	4.1	63
33	Accurate and easy method for systemin quantification and examining metabolic changes under different endogenous levels. Plant Methods, 2018, 14, 33.	4.3	25
34	Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 2017, 68, 485-512.	18.7	692
35	Folivory elicits a strong defense reaction in Catharanthus roseus: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. Scientific Reports, 2017, 7, 40453.	3.3	39
36	Stage-Related Defense Response Induction in Tomato Plants by Nesidiocoris tenuis. International Journal of Molecular Sciences, 2016, 17, 1210.	4.1	51

#	Article	IF	Citations
37	The Nitrogen Availability Interferes with Mycorrhiza-Induced Resistance against Botrytis cinerea in Tomato. Frontiers in Microbiology, 2016, 7, 1598.	3.5	49
38	Temporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii. Frontiers in Plant Science, 2016, 6, 1209.	3.6	24
39	Modes of action of the protective strain Fo47 in controlling verticillium wilt of pepper. Plant Pathology, 2016, 65, 997-1007.	2.4	26
40	Systemic resistance in citrus to <i>Tetranychus urticae </i> induced by conspecifics is transmitted by grafting and mediated by mobile amino acids. Journal of Experimental Botany, 2016, 67, 5711-5723.	4.8	43
41	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
42	Analysis of the Molecular Dialogue Between Gray Mold (<i>Botrytis cinerea</i>) and Grapevine (<i>Vitis vinifera</i>) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions, 2015, 28, 1167-1180.	2.6	73
43	<i><scp>T</scp>etranychus urticae</i> ê€triggered responses promote genotypeâ€dependent conspecific repellence or attractiveness in citrus. New Phytologist, 2015, 207, 790-804.	7.3	52
44	Metabolic transition in mycorrhizal tomato roots. Frontiers in Microbiology, 2015, 6, 598.	3.5	111
45	Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. Journal of Pest Science, 2015, 88, 543-554.	3.7	92
46	The †prime-ome': towards a holistic approach to priming. Trends in Plant Science, 2015, 20, 443-452.	8.8	287
47	Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera:) Tj ETQq1 1 0.78	43]4.rgBT	Oyerlock 10
48	Quantification of Callose Deposition in Plant Leaves. Bio-protocol, 2015, 5, .	0.4	8
49	The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine's Induced Resistance against Plasmopara viticola. PLoS ONE, 2014, 9, e88145.	2.5	106
50	Disruption of the ammonium transporter AMT1.1 alters basal defenses generating resistance against Pseudomonas syringae and Plectosphaerella cucumerina. Frontiers in Plant Science, 2014, 5, 231.	3.6	42
51	Preparing to fight back: generation and storage of priming compounds. Frontiers in Plant Science, 2014, 5, 295.	3.6	104
52	Different metabolic and genetic responses in citrus may explain relative susceptibility to <i>Tetranychus urticae</i> . Pest Management Science, 2014, 70, 1728-1741.	3.4	57
53	The plasticity of priming phenomenon activates not only common metabolomic fingerprint but also specific responses against <i>P. cucumerina</i> Plant Signaling and Behavior, 2014, 9, e28916.	2.4	6
54	Targeting novel chemical and constitutive primed metabolites against <i><scp>P</scp>lectosphaerella cucumerina</i> . Plant Journal, 2014, 78, 227-240.	5.7	56

#	Article	IF	Citations
55	Plant perception of \hat{l}^2 -aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 2014, 10, 450-456.	8.0	128
56	Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Reports, 2014, 33, 1935-1949.	5.6	61
57	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	1.8	78
58	Role of two UDP-Glycosyltransferases from the L group of arabidopsis in resistance against pseudomonas syringae. European Journal of Plant Pathology, 2014, 139, 707-720.	1.7	32
59	Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Reports, 2013, 32, 1085-1098.	5.6	263
60	Primed plants do not forget. Environmental and Experimental Botany, 2013, 94, 46-56.	4.2	301
61	Metabolomics of cereals under biotic stress: current knowledge and techniques. Frontiers in Plant Science, 2013, 4, 82.	3.6	126
62	Fine Tuning of Reactive Oxygen Species Homeostasis Regulates Primed Immune Responses in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1334-1344.	2.6	93
63	A deletion in the nitrate high affinity transporter NRT2.1 alters metabolomic and transcriptomic responses to Pseudomonas syringae. Plant Signaling and Behavior, 2012, 7, 619-622.	2.4	11
64	A Deletion in <i>NRT2.1</i> Attenuates <i>Pseudomonas syringae</i> Induced Hormonal Perturbation, Resulting in Primed Plant Defenses Â. Plant Physiology, 2012, 158, 1054-1066.	4.8	79
65	Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress Â. Plant Physiology, 2012, 158, 835-843.	4.8	442
66	T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora. Plant Science, 2012, 188-189, 1-9.	3.6	31
67	Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiology and Biochemistry, 2012, 61, 115-122.	5.8	62
68	Identification of indole-3-carboxylic acid as mediator of priming against Plectosphaerella cucumerina. Plant Physiology and Biochemistry, 2012, 61, 169-179.	5.8	80
69	Next-Generation Systemic Acquired Resistance Â. Plant Physiology, 2012, 158, 844-853.	4.8	577
70	Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. Plant Physiology and Biochemistry, 2012, 53, 19-26.	5.8	14
71	Callose Deposition: A Multifaceted Plant Defense Response. Molecular Plant-Microbe Interactions, 2011, 24, 183-193.	2.6	613
72	Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. Journal of Plant Physiology, 2011, 168, 359-366.	3.5	67

#	Article	IF	Citations
73	Arabidopsis <i>ocp3</i> mutant reveals a mechanism linking ABA and JA to pathogenâ€induced callose deposition. Plant Journal, 2011, 67, 783-794.	5.7	116
74	The RNA Silencing Enzyme RNA Polymerase V Is Required for Plant Immunity. PLoS Genetics, 2011, 7, e1002434.	3.5	184
75	Benzoxazinoid Metabolites Regulate Innate Immunity against Aphids and Fungi in Maize Â. Plant Physiology, 2011, 157, 317-327.	4.8	295
76	AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling and Behavior, 2010, 5, 1138-1140.	2.4	44
77	Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 2010, 61, 2589-2601.	4.8	238
78	Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signaling and Behavior, 2009, 4, 639-641.	2.4	37
79	Insect-induced gene expression at the core of volatile terpene release in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2009, 4, 636-638.	2.4	26
80	Drought tolerance in Arabidopsis is controlled by the <i>OCP3</i> disease resistance regulator. Plant Journal, 2009, 58, 578-591.	5.7	78
81	Signal signature of abovegroundâ€induced resistance upon belowground herbivory in maize. Plant Journal, 2009, 59, 292-302.	5.7	244
82	The ATAF1 transcription factor: At the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Research, 2009, 19, 1322-1323.	12.0	50
83	Underivatized polyamine analysis in plant samples by ion pair LC coupled with electrospray tandem mass spectrometry. Plant Physiology and Biochemistry, 2009, 47, 592-598.	5.8	33
84	The multifaceted role of ABA in disease resistance. Trends in Plant Science, 2009, 14, 310-317.	8.8	782
85	Hexanoic Acid-Induced Resistance Against <i>Botrytis cinerea</i> in Tomato Plants. Molecular Plant-Microbe Interactions, 2009, 22, 1455-1465.	2.6	117
86	Interplay between JA, SA and ABA signalling during basal and induced resistance against <i>Pseudomonas syringae</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2008, 54, 81-92.	5.7	262
87	Preventive and postâ€infection control of <i>Botrytis cinerea</i> in tomato plants by hexanoic acid. Plant Pathology, 2008, 57, 1038-1046.	2.4	50
88	Regulation of Nitrate Transport in Citrus Rootstocks Depending of Nitrogen Availability. Plant Signaling and Behavior, 2007, 2, 337-342.	2.4	17
89	A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli. Plant Signaling and Behavior, 2007, 2, 50-57.	2.4	24
90	Absence of the endoâ€Î²â€1,4â€glucanases Cel1 and Cel2 reduces susceptibility to <i>Botrytis cinerea</i> in tomato. Plant Journal, 2007, 52, 1027-1040.	5.7	99

#	Article	IF	CITATIONS
91	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	2.6	1,241
92	Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester. Archives of Microbiology, 2006, 184, 316-326.	2.2	24
93	Abscisic Acid and Callose: Team Players in Defence Against Pathogens?. Journal of Phytopathology, 2005, 153, 377-383.	1.0	117
94	Enhancing Arabidopsis Salt and Drought Stress Tolerance by Chemical Priming for Its Abscisic Acid Responses. Plant Physiology, 2005, 139, 267-274.	4.8	387
95	Dissecting the β-Aminobutyric Acid–Induced Priming Phenomenon in Arabidopsis. Plant Cell, 2005, 17, 987-999.	6.6	356
96	An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. Plant Cell, 2005, 17, 2123-2137.	6.6	108
97	Effect of analogues of plant growth regulators on in vitro growth of eukaryotic plant pathogens. Plant Pathology, 2004, 53, 58-64.	2.4	11
98	Aquifer Contamination by Nitrogen After Sewage Sludge Fertilization. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 344-351.	2.7	5
99	Induction of protection against the necrotrophic pathogens Phytophthora citrophthora and Alternaria solani in Lycopersicon esculentum Mill. by a novel synthetic glycoside combined with amines. Planta, 2003, 216, 929-938.	3.2	19
100	Enzymatic and Non-enzymatic Antioxidant Responses of Carrizo citrange, a Salt-Sensitive Citrus Rootstock, to Different Levels of Salinity. Plant and Cell Physiology, 2003, 44, 388-394.	3.1	148
101	Three novel synthetic amides of adipic acid protect Capsicum anuum plants against the necrotrophic pathogen Alternaria solani. Physiological and Molecular Plant Pathology, 2003, 63, 151-158.	2.5	16
102	Effect of a Novel Chemical Mixture on Senescence Processes and Plantâ [*] Fungus Interaction in Solanaceae Plants. Journal of Agricultural and Food Chemistry, 2001, 49, 2569-2575.	5.2	13
103	Influence of wastewater vs groundwater on youngCitrus trees. Journal of the Science of Food and Agriculture, 2000, 80, 1441-1446.	3.5	44
104	Characterization of the low affinity transport system for NO3â^' uptake by Citrus roots. Plant Science, 2000, 160, 95-104.	3.6	27
105	Role of Abscisic Acid in Disease Resistance. , 0, , 1-22.		6
106	Mycorrhizal Symbiosis Triggers Local Resistance in Citrus Plants Against Spider Mites. Frontiers in Plant Science, $0,13,.$	3.6	6