Sabine L Flitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083993/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017, 7, 710-724.	11.2	322
2	Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry, 1989, 28, 7806-7812.	2.5	291
3	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	21.2	255
4	Selective oxidation of monosaccharide derivatives to uronic acids. Tetrahedron Letters, 1993, 34, 1181-1184.	1.4	221
5	Cytochromes P450 as useful biocatalysts: addressing the limitations. Chemical Communications, 2011, 47, 2490.	4.1	221
6	Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nature Biotechnology, 2004, 22, 1133-1138.	17.5	192
7	Discrimination of epimeric glycans and glycopeptides using IM-MS and its potential for carbohydrate sequencing. Nature Chemistry, 2014, 6, 65-74.	13.6	171
8	One-Pot Cascade Synthesis of Mono- and Disubstituted Piperidines and Pyrrolidines using Carboxylic Acid Reductase (CAR), ω-Transaminase (ω-TA), and Imine Reductase (IRED) Biocatalysts. ACS Catalysis, 2016, 6, 3753-3759.	11.2	171
9	Deubiquitinases Regulate the Activity of Caspase-1 and Interleukin-1Î ² Secretion via Assembly of the Inflammasome. Journal of Biological Chemistry, 2013, 288, 2721-2733.	3.4	154
10	Identification of a New Class of Cytochrome P450 from a Rhodococcus sp. Journal of Bacteriology, 2002, 184, 3898-3908.	2.2	146
11	Glycoarrays—tools for determining protein–carbohydrate interactions and glycoenzyme specificity. Chemical Communications, 2008, , 4400.	4.1	131
12	RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nature Catalysis, 2021, 4, 98-104.	34.4	131
13	Slow α Helix Formation during Folding of a Membrane Protein. Biochemistry, 1997, 36, 192-196.	2.5	122
14	Quaternary Ammonium Compounds as Water Channel Blockers. Journal of Biological Chemistry, 2006, 281, 14207-14214.	3.4	120
15	Evidence That Bilayer Bending Rigidity Affects Membrane Protein Folding. Biochemistry, 1997, 36, 197-203.	2.5	117
16	A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.	3.7	109
17	Intermediates in the folding of the membrane protein bacteriorhodopsin. Nature Structural and Molecular Biology, 1995, 2, 139-143.	8.2	108
18	Advancing Solutions to the Carbohydrate Sequencing Challenge. Journal of the American Chemical Society, 2019, 141, 14463-14479.	13.7	108

#	Article	IF	CITATIONS
19	Protease-Catalyzed Peptide Synthesis on Solid Support. Journal of the American Chemical Society, 2002, 124, 10988-10989.	13.7	107
20	Glycoprotein Labeling Using Engineered Variants of Galactose Oxidase Obtained by Directed Evolution. Journal of the American Chemical Society, 2011, 133, 8436-8439.	13.7	105
21	Anomeric memory of the glycosidic bond upon fragmentation and its consequences for carbohydrate sequencing. Nature Communications, 2017, 8, 973.	12.8	103
22	A Self-sufficient Cytochrome P450 with a Primary Structural Organization That Includes a Flavin Domain and a [2Fe-2S] Redox Center. Journal of Biological Chemistry, 2003, 278, 48914-48920.	3.4	94
23	Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconjugate Journal, 2008, 25, 69-74.	2.7	93
24	Enzyme catalysis on solid surfaces. Trends in Biotechnology, 2008, 26, 328-337.	9.3	93
25	Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chemistry and Biology, 2001, 8, 133-145.	6.0	92
26	Eeyarestatin I inhibits Sec61-mediated protein translocation at the endoplasmic reticulum. Journal of Cell Science, 2009, 122, 4393-4400.	2.0	90
27	A Versatile Gold Surface Approach for Fabrication and Interrogation of Glycoarrays. ChemBioChem, 2008, 9, 1568-1575.	2.6	88
28	Wholeâ€Cell Biocatalysts for Stereoselective Câ^'H Amination Reactions. Angewandte Chemie - International Edition, 2016, 55, 1511-1513.	13.8	85
29	A novel method for the specific glycosylation of proteins. Tetrahedron Letters, 1991, 32, 6793-6796.	1.4	81
30	Enzymatic reactions on immobilised substrates. Chemical Society Reviews, 2013, 42, 6378.	38.1	79
31	Enzyme Cascades in Whole Cells for the Synthesis of Chiral Cyclic Amines. ACS Catalysis, 2017, 7, 2920-2925.	11.2	75
32	Enzymatic Late‣tage Modifications: Better Late Than Never. Angewandte Chemie - International Edition, 2021, 60, 16824-16855.	13.8	75
33	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie - International Edition, 2017, 56, 14498-14501.	13.8	74
34	Retinal Binding during Folding and Assembly of the Membrane Protein Bacteriorhodopsinâ€. Biochemistry, 1996, 35, 5902-5909.	2.5	70
35	An Efficient Synthetic Route to Glycoamino Acid Building Blocks for Glycopeptide Synthesis. Organic Letters, 2004, 6, 4001-4004.	4.6	68
36	Chemoenzymatic Synthesis of <i>O</i> -Mannosylpeptides in Solution and on Solid Phase. Journal of the American Chemical Society, 2012, 134, 4521-4524.	13.7	68

#	Article	IF	CITATIONS
37	Preparation of aminoethyl glycosides for glycoconjugation. Beilstein Journal of Organic Chemistry, 2010, 6, 699-703.	2.2	67
38	Chemoenzymatic Synthesis of Optically Purel- andd-Biarylalanines through Biocatalytic Asymmetric Amination and Palladium-Catalyzed Arylation. ACS Catalysis, 2015, 5, 5410-5413.	11.2	67
39	Enzyme-catalyzed formation of glycosidic linkages. Current Opinion in Structural Biology, 1997, 7, 652-660.	5.7	65
40	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
41	Enzymatic Clycosylation of Peptide Arrays on Gold Surfaces. ChemBioChem, 2008, 9, 883-887.	2.6	63
42	Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydrate Research, 2015, 415, 60-65.	2.3	62
43	Application of Biocatalysis to onâ€DNA Carbohydrate Library Synthesis. ChemBioChem, 2017, 18, 858-863.	2.6	60
44	Discovery of Novel Human Aquaporin-1 Blockers. ACS Chemical Biology, 2013, 8, 249-256.	3.4	58
45	Understanding enzyme action on immobilised substrates. Current Opinion in Biotechnology, 2005, 16, 385-392.	6.6	57
46	Microwave-Assisted Ring Opening of Epoxides:  A General Route to the Synthesis of 1-Aminopropan-2-ols with Anti Malaria Parasite Activities. Journal of Medicinal Chemistry, 2007, 50, 4243-4249.	6.4	57
47	Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chemical Communications, 2009, , 2478.	4.1	56
48	Chemical and enzymatic synthesis of glycopolymers. Current Opinion in Chemical Biology, 2000, 4, 619-625.	6.1	55
49	LICRED: A Versatile Dropâ€In Vector for Rapid Generation of Redoxâ€Selfâ€Sufficient Cytochrome P450s. ChemBioChem, 2010, 11, 987-994.	2.6	53
50	Dibutylstannylene acetals: Useful intermediates for the regioselective sulfation of glycosides Tetrahedron: Asymmetry, 1994, 5, 2163-2178.	1.8	52
51	Sugars tied to the spot. Nature, 2003, 421, 219-220.	27.8	51
52	Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Letters, 2005, 579, 2215-2220.	2.8	51
53	Synthesis and modifications of carbohydrates, using biotransformations. Current Opinion in Chemical Biology, 2004, 8, 106-113.	6.1	50
54	Regio―and Enantioâ€selective Chemoâ€enzymatic Câ^'H‣actonization of Decanoic Acid to (<i>S</i>)â€Ĵrâ€Decalactone. Angewandte Chemie - International Edition, 2019, 58, 5668-5671.	13.8	50

#	Article	IF	CITATIONS
55	Structural studies on transmembrane proteins. 1. Model study using bacteriorhodopsin mutants containing single cysteine residues. Biochemistry, 1989, 28, 7800-7805.	2.5	49
56	IRMPD Spectroscopy Sheds New (Infrared) Light on the Sulfate Pattern of Carbohydrates. Journal of Physical Chemistry A, 2017, 121, 2114-2120.	2.5	49
57	Real-Time Screening of Biocatalysts in Live Bacterial Colonies. Journal of the American Chemical Society, 2017, 139, 1408-1411.	13.7	48
58	An Asymmetric Enzyme-Catalyzed Retro-Claisen Reaction for the Desymmetrization of Cyclicβ-Diketones. Angewandte Chemie - International Edition, 2001, 40, 1111-1114.	13.8	47
59	Development of a protecting group for sulfate esters. Tetrahedron Letters, 1997, 38, 7243-7246.	1.4	44
60	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie - International Edition, 2021, 60, 18660-18665.	13.8	44
61	Enzymatic Generation and In Situ Screening of a Dynamic Combinatorial Library of Sialic Acid Analogues. Angewandte Chemie - International Edition, 2002, 41, 3405-3407.	13.8	43
62	Accelerated Enzymatic Galactosylation of <i>N</i> -Acetylglucosaminolipids in Lipid Microdomains. Journal of the American Chemical Society, 2012, 134, 13010-13017.	13.7	43
63	Eeyarestatin Compounds Selectively Enhance Sec61-Mediated Ca2+ Leakage from the Endoplasmic Reticulum. Cell Chemical Biology, 2019, 26, 571-583.e6.	5.2	42
64	Efficient Enzymatic Synthesis of the Core Trisaccharide ofN-Glycans with a Recombinantl²-Mannosyltransferase. Angewandte Chemie International Edition in English, 1997, 36, 2354-2356.	4.4	41
65	Substrate promiscuity of cytochrome P450 RhF. Catalysis Science and Technology, 2013, 3, 1490.	4.1	41
66	SPOT Synthesis of Peptide Arrays on Selfâ€Assembled Monolayers and their Evaluation as Enzyme Substrates. ChemBioChem, 2008, 9, 2592-2596.	2.6	40
67	Chemical and biological approaches to glycoprotein synthesis. Chemistry and Biology, 1996, 3, 145-149.	6.0	39
68	The chemoenzymatic synthesis of the core trisaccharide of N-linked oligosaccharides using a recombinant β-mannosyltransferase. Carbohydrate Research, 1997, 305, 533-541.	2.3	39
69	The Desymmetrization of Bicyclic β-Diketones by an Enzymatic Retro-Claisen Reaction. Journal of Biological Chemistry, 2001, 276, 12565-12572.	3.4	38
70	Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from Actinomycetes. Organic and Biomolecular Chemistry, 2005, 3, 2930.	2.8	38
71	Assessing the cluster glycoside effect during the binding of concanavalin A to mannosylated artificial lipid rafts. Organic and Biomolecular Chemistry, 2009, 7, 5245.	2.8	38
72	A novel linker for the attachment of alcohols to solid supports. Tetrahedron Letters, 1998, 39, 3819-3822.	1.4	37

#	Article	IF	CITATIONS
73	Panel of New Thermostable CYP116B Self‣ufficient Cytochromeâ€P450 Monooxygenases that Catalyze Câ^'H Activation with a Diverse Substrate Scope. ChemCatChem, 2018, 10, 1042-1051.	3.7	37
74	Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes. ACS Catalysis, 2019, 9, 11658-11662.	11.2	36
75	Solid-Phase Synthesis of Thioether-Linked Glycopeptide Mimics for Application to Glycoprotein Semisynthesis. Organic Letters, 2002, 4, 1467-1470.	4.6	35
76	Generation of a dynamic combinatorial library using sialic acid aldolase and in situ screening against wheat germ agglutinin. Tetrahedron, 2004, 60, 771-780.	1.9	35
77	Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein Journal of Organic Chemistry, 2011, 7, 1494-1498.	2.2	34
78	Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosensors and Bioelectronics, 2016, 85, 103-109.	10.1	33
79	Biocatalytic Monoacylation of Symmetrical Diamines and Its Application to the Synthesis of Pharmaceutically Relevant Amides. ACS Catalysis, 2020, 10, 10005-10009.	11.2	33
80	Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC. BMC Biotechnology, 2010, 10, 82.	3.3	32
81	Inhibition of protein translocation at the endoplasmic reticulum promotes activation of the unfolded protein response. Biochemical Journal, 2012, 442, 639-648.	3.7	32
82	Engineered Ammonia Lyases for the Production of Challenging Electron-Rich <scp>l</scp> -Phenylalanines. ACS Catalysis, 2018, 8, 3129-3132.	11.2	32
83	Understanding protease catalysed solid phase peptide synthesis. Organic and Biomolecular Chemistry, 2003, 1, 1277-1281.	2.8	31
84	Probing the substrate specificity of the catalytically self-sufficient cytochrome P450 RhF from a Rhodococcus sp Chemical Communications, 2006, , 4492-4494.	4.1	31
85	Eeyarestatin 1 Interferes with Both Retrograde and Anterograde Intracellular Trafficking Pathways. PLoS ONE, 2011, 6, e22713.	2.5	31
86	Regioselective sulfation of disaccharides using dibutylstannylene acetals. Tetrahedron Letters, 1994, 35, 6563-6566.	1.4	30
87	Chemoenzymatic synthesis of sialooligosaccharides on arrays for studies of cell surface adhesion. Chemical Communications, 2011, 47, 5425-5427.	4.1	30
88	Heavily fluorinated carbohydrates as enzyme substrates: oxidation of tetrafluorinated galactose by galactose oxidase. Chemical Communications, 2011, 47, 11228.	4.1	30
89	Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow. Analytical Chemistry, 2020, 92, 15323-15335.	6.5	30
90	New fluoride-labile linkers for solid-phase organic synthesis. Tetrahedron Letters, 1997, 38, 8287-8290.	1.4	29

#	Article	IF	CITATIONS
91	Design, Synthesis and Assaying of Potential Aquaporin Inhibitors. Handbook of Experimental Pharmacology, 2009, , 385-402.	1.8	29
92	Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling. ChemBioChem, 2016, 17, 426-432.	2.6	29
93	The selfâ€sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5â€hydroxylation of diclofenac. Biotechnology Journal, 2017, 12, 1600520.	3.5	29
94	Chemo-enzymatic synthesis of a lipid-linked core trisaccharide of N-linked glycoproteins. Journal of the Chemical Society Perkin Transactions 1, 1992, , 2087.	0.9	28
95	Increased Thermal Stability of Site-Selectively Glycosylated Dihydrofolate Reductase. ChemBioChem, 2005, 6, 1338-1340.	2.6	28
96	The preparation of deoxy derivatives of mannose-1-phosphate and their substrate specificity towards recombinant GDP-mannose pyrophosphorylase from Salmonella enterica, group B. Tetrahedron: Asymmetry, 2000, 11, 621-628.	1.8	27
97	Using two photon microscopy to quantify enzymatic reaction rates on polymer beads. Chemical Communications, 2003, , 2790.	4.1	27
98	Cytochrome P-450cam monooxygenase can be redesigned to catalyse the regioselective aromatic hydroxylation of diphenylmethane. Journal of the Chemical Society Chemical Communications, 1994, , 2761.	2.0	25
99	Profiling Primary Protease Specificity by Peptide Synthesis on a Solid Support. Angewandte Chemie - International Edition, 2004, 43, 3138-3141.	13.8	25
100	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie, 2017, 129, 14690-14693.	2.0	25
101	Lipase-Catalyzed Kinetic Resolution on Solid-Phase via a "Capture and Release―Strategy. Journal of the American Chemical Society, 2003, 125, 13952-13953.	13.7	24
102	Oxo-ester mediated native chemical ligation on microarrays: an efficient and chemoselective coupling methodology. Chemical Communications, 2012, 48, 4444.	4.1	24
103	2-Pyridylfuran: A New Fluorescent Tag for the Analysis of Carbohydrates. Analytical Chemistry, 2014, 86, 5179-5186.	6.5	24
104	Aliphatic vs. aromatric C–H bond activation of phenylcyclohexane catalysed by cytochrome P450cam. Chemical Communications, 1996, , 357-358.	4.1	23
105	Improved biotransformations on charged PEGA supports. Chemical Communications, 2003, , 1296.	4.1	23
106	P450 camr , a cytochrome P450 catalysing the stereospecific 6- endo -hydroxylation of (1 R) Tj ETQq0 0 0 rgBT /0	Dvgrlock 1	0 Tf 50 142 1

107	Enzymatic optical resolution via acylation–hydrolysis on a solid support. Organic and Biomolecular Chemistry, 2003, 1, 621-622.	2.8	21
108	Controlling protein retention on enzyme-responsive surfaces. Surface and Interface Analysis, 2006, 38, 1505-1511.	1.8	21

#	Article	IF	CITATIONS
109	Biocompatible functionalisation of starch. Chemical Communications, 2011, 47, 683-685.	4.1	21
110	Enzyme promiscuity of carbohydrate active enzymes and their applications in biocatalysis. Current Opinion in Structural Biology, 2020, 65, 184-192.	5.7	21
111	Expression and mutagenesis of recombinant human and murine erythropoietins in Escherichia coli. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 35-43.	2.4	20
112	Biohydroxylations of Cbz-protected alkyl substituted piperidines by Beauveria bassiana ATCC 7159. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3365-3370.	0.9	20
113	Two-Photon Microscopy to Spatially Resolve and Quantify Fluorophores in Single-Bead Chemistry. ACS Combinatorial Science, 2003, 5, 215-217.	3.3	20
114	Enzymatic Glycosylations on Arrays. OMICS A Journal of Integrative Biology, 2010, 14, 437-444.	2.0	20
115	Chemo-enzymatic synthesis of a β-mannosyl-containing trisaccharide. Journal of the Chemical Society Chemical Communications, 1991, , 382-384.	2.0	19
116	Biohydroxylation Reactions Catalyzed by Enzymes and Whole-Cell Systems. Bioorganic Chemistry, 1999, 27, 81-90.	4.1	19
117	Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins. Analytical Chemistry, 2017, 89, 4444-4451.	6.5	19
118	The chemoenzymatic synthesis of neoglycolipids and lipid-linked oligosaccharides using glycosyltransferases. Bioorganic and Medicinal Chemistry, 1994, 2, 1243-1250.	3.0	18
119	Development of recombinant, immobilised β-1,4-mannosyltransferase for use as an efficient tool in the chemoenzymatic synthesis of N-linked oligosaccharides. Biochimica Et Biophysica Acta - General Subjects, 1999, 1428, 88-98.	2.4	18
120	Kinetics of Enzyme Attack on Substrates Covalently Attached to Solid Surfaces: Influence of Spacer Chain Length, Immobilized Substrate Surface Concentration and Surface Charge. Langmuir, 2008, 24, 11762-11769.	3.5	18
121	Biochemical correlation of activity of the α-dystroglycan-modifying glycosyltransferase POMGnT1 with mutations in muscle-eye-brain disease. Biochemical Journal, 2011, 436, 447-455.	3.7	18
122	Synthesis of Enantiomerically Pure Ring-Substituted <scp>l</scp> -Pyridylalanines by Biocatalytic Hydroamination. Organic Letters, 2016, 18, 5468-5471.	4.6	18
123	Ganzzellenâ€Biokatalysator für stereoselektive Câ€Hâ€Aminierungen. Angewandte Chemie, 2016, 128, 1533-1	.5 26 .	18
124	Characterisation of a Bacterial Galactokinase with High Activity and Broad Substrate Tolerance for Chemoenzymatic Synthesis of 6â€Aminogalactoseâ€1â€Phosphate and Analogues. ChemBioChem, 2018, 19, 388-394.	2.6	18
125	Mass spectrometry hybridized with gas-phase InfraRed spectroscopy for glycan sequencing. Current Opinion in Structural Biology, 2020, 62, 121-131.	5.7	18
126	Oneâ€Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18

#	Article	IF	CITATIONS
127	Penicillin biosynthesis: structure–reactivity profile of unsaturated substrates for isopenicillin N synthetase. Journal of the Chemical Society Chemical Communications, 1986, , 273-275.	2.0	16
128	Selective Oxidation of <i>N</i> -Glycolylneuraminic Acid Using an Engineered Galactose Oxidase Variant. ACS Catalysis, 2019, 9, 8208-8212.	11.2	16
129	Natural heterogeneous catalysis with immobilised oxidase biocatalysts. RSC Advances, 2020, 10, 19501-19505.	3.6	16
130	Penicillin biosynthesis: the origin of hydroxy groups in β-lactams derived from unsaturated substrates. Journal of the Chemical Society Chemical Communications, 1986, , 1305-1308.	2.0	15
131	Enzyme-cleavable linkers for peptide and glycopeptide synthesis. Organic and Biomolecular Chemistry, 2005, 3, 2505.	2.8	15
132	Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 1713-1720.	2.2	15
133	Copperâ€Catalyzed Double Additions and Radical Cyclization Cascades in the Reâ€Engineering of the Antibacterial Pleuromutilin. Chemistry - A European Journal, 2016, 22, 116-119.	3.3	15
134	Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger. Scientific Reports, 2017, 7, 43117.	3.3	15
135	Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope. Enzyme and Microbial Technology, 2018, 113, 1-8.	3.2	15
136	Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chemical Biology, 2020, 27, 1199-1206.e5.	5.2	15
137	Chemoenzymatic synthesis of a glycosphingolipid. Journal of the Chemical Society Chemical Communications, 1992, , 1526.	2.0	14
138	Introduction of permanently charged groups into PEGA resins leads to improved biotransformations on solid support. Tetrahedron, 2004, 60, 589-594.	1.9	14
139	Dual purpose S-trityl-linkers for glycoarray fabrication on both polystyrene and gold. Organic and Biomolecular Chemistry, 2012, 10, 8919.	2.8	14
140	Enzymatic synthesis of <i>N</i> -acetyllactosamine from lactose enabled by recombinant β1,4-galactosyltransferases. Organic and Biomolecular Chemistry, 2019, 17, 5920-5924.	2.8	14
141	Enzymatic synthesis of a new type of penicillin. Journal of the Chemical Society Chemical Communications, 1986, , 975.	2.0	13
142	Rapid identification of cytochrome P450cam variants by in vivo screening of active site libraries. Tetrahedron: Asymmetry, 2004, 15, 2829-2831.	1.8	13
143	Enzymatic synthesis of peptides on a solid support. Organic and Biomolecular Chemistry, 2009, 7, 665-670.	2.8	13
144	Sialylation of lactosyl lipids in membrane microdomains by <i>T. cruzi trans</i> -sialidase. Organic and Biomolecular Chemistry, 2014, 12, 9272-9278.	2.8	13

#	Article	IF	CITATIONS
145	Whole-cell microtiter plate screening assay for terminal hydroxylation of fatty acids by P450s. Chemical Communications, 2016, 52, 6158-6161.	4.1	13
146	The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s. Biochemical and Biophysical Research Communications, 2018, 501, 846-850.	2.1	13
147	Synthesis of protected 3-aminopiperidine and 3-aminoazepane derivatives using enzyme cascades. Chemical Communications, 2020, 56, 7949-7952.	4.1	13
148	Rapid Screening of Diverse Biotransformations for Enzyme Evolution. Jacs Au, 2021, 1, 508-516.	7.9	13
149	Novel Mechanism of Inhibition of Elastase by β-Lactams Is Defined by Two Inhibitor Crystal Complexes. Journal of Biological Chemistry, 1999, 274, 24901-24905.	3.4	12
150	Glycosylation with a twist. Nature, 2005, 437, 201-202.	27.8	12
151	Highly siteâ€selective stability increases by glycosylation of dihydrofolate reductase. FEBS Journal, 2010, 277, 2171-2179.	4.7	12
152	The effect of multivalent binding on the lateral phase separation of adhesive lipids. Faraday Discussions, 2010, 145, 219-233.	3.2	12
153	Rapid and sensitive monitoring of biocatalytic reactions using ion mobility mass spectrometry. Analyst, The, 2016, 141, 2351-2355.	3.5	12
154	â€~One-pot' sequential enzymatic modification of synthetic glycolipids in vesicle membranes. Chemical Communications, 2018, 54, 1347-1350.	4.1	12
155	Applications of a highly $\hat{I}\pm 2$,6-selective pseudosialidase. Glycobiology, 2018, 28, 261-268.	2.5	12
156	Organically modified xerogels as supports for solid-phase chemistry. Tetrahedron Letters, 2003, 44, 6083-6085.	1.4	11
157	Optimized polymer–enzyme electrostatic interactions significantly improve penicillin G amidase efficiency in charged PEGA polymers. Tetrahedron, 2005, 61, 971-976.	1.9	11
158	Synthesis of homogenous site-selectively glycosylated proteins. Organic and Biomolecular Chemistry, 2005, 3, 572.	2.8	11
159	Enzymatic Amine Acyl Exchange in Peptides on Gold Surfaces. Angewandte Chemie - International Edition, 2012, 51, 13016-13018.	13.8	11
160	Enzymatic synthesis of colorimetric substrates to determine α-2,3- and α-2,6-specific neuraminidase activity. RSC Advances, 2013, 3, 21335.	3.6	11
161	Glycosylation Characterization of Human and Porcine Fibrinogen Proteins by Lectin-Binding Biophotonic Microarray Imaging. Analytical Chemistry, 2014, 86, 621-628.	6.5	11
162	Enzymkatalysierte spÄæ Modifizierungen: Besser spÄæals nie. Angewandte Chemie, 2021, 133, 16962-16993.	2.0	11

#	Article	IF	CITATIONS
163	Formation of carbohydrate-functionalised polystyrene and glass slides and their analysis by MALDI-TOF MS. Beilstein Journal of Organic Chemistry, 2012, 8, 753-762.	2.2	10
164	Biocatalytic Transfer of Pseudaminic Acid (Pse5Ac7Ac) Using Promiscuous Sialyltransferases in a Chemoenzymatic Approach to Pse5Ac7Ac-Containing Glycosides. ACS Catalysis, 2020, 10, 9986-9993.	11.2	10
165	MALDI-ToF MS Analysis of Glycosyltransferase Activities on Gold Surface Arrays. Methods in Molecular Biology, 2012, 808, 269-284.	0.9	10
166	Eine effiziente enzymatische Synthese des Coreâ€Trisaccharids von Nâ€Glycanen mit einer rekombinanten βâ€Mannosyltransferase. Angewandte Chemie, 1997, 109, 2445-2447.	2.0	9
167	Profiling Glycosyltransferase Activities by Tritium Imaging of Glycan Microarrays. ChemBioChem, 2013, 14, 862-869.	2.6	9
168	Automated glycan assembly of <i>Streptococcus pneumoniae</i> type 14 capsular polysaccharide fragments. RSC Advances, 2020, 10, 23668-23674.	3.6	9
169	Synthesis of N-linked glycopeptides on solid support and their evaluation as protease substrates. Tetrahedron: Asymmetry, 2005, 16, 21-24.	1.8	8
170	Real-Time Imaging of Protease Action on Substrates Covalently Immobilised to Polymer Supports. Advanced Synthesis and Catalysis, 2007, 349, 1321-1326.	4.3	8
171	Biological and biochemical properties of two Xenopus laevis N-acetylgalactosaminyltransferases with contrasting roles in embryogenesis. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 180, 40-47.	1.6	8
172	A Bifunctional Spin Label for Ligand Recognition on Surfaces. Angewandte Chemie - International Edition, 2017, 56, 9449-9453.	13.8	8
173	Characterisation of CYP102A25 from <i>Bacillus marmarensis</i> and CYP102A26 from <i>Pontibacillus halophilus</i> : P450 Homologues of BM3 with Preference towards Hydroxylation of Mediumâ€Chain Fatty Acids. ChemBioChem, 2018, 19, 513-520.	2.6	8
174	The characterisation of a galactokinase from Streptomyces coelicolor. Carbohydrate Research, 2019, 472, 132-137.	2.3	8
175	Regio―and Enantioâ€selective Chemoâ€enzymatic Câ~'H‣actonization of Decanoic Acid to (<i>S</i>)â€l´â€Decalactone. Angewandte Chemie, 2019, 131, 5724-5727.	2.0	8
176	Exploiting the Disialyl Galactose Activity of α2,6-Sialyltransferase from <i>Photobacterium damselae</i> To Generate a Highly Sialylated Recombinant α-1-Antitrypsin. Biochemistry, 2020, 59, 3123-3128.	2.5	8
177	An Enzymatic Nâ€Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides. Angewandte Chemie - International Edition, 2020, 59, 5308-5311.	13.8	8
178	A versatile route to edge-specific modifications to pristine graphene by electrophilic aromatic substitution. Journal of Materials Science, 2020, 55, 10284-10302.	3.7	8
179	Chemoenzymatic synthesis of 3-deoxy-3-fluoro- <scp>l</scp> -fucose and its enzymatic incorporation into glycoconjugates. Chemical Communications, 2020, 56, 6408-6411.	4.1	8
180	Synthesis of a novel acceptor substrate for a mannosyl transferase. Journal of the Chemical Society Chemical Communications, 1991, , 380.	2.0	7

#	Article	IF	CITATIONS
181	UDP-Glucose 4-Epimerase and β-1,4-Galactosyltransferase from the Oyster Magallana gigas as Valuable Biocatalysts for the Production of Galactosylated Products. International Journal of Molecular Sciences, 2018, 19, 1600.	4.1	7
182	Biochemical characterisation of an $\hat{l}\pm 1,4$ galactosyltransferase from <i>Neisseria weaveri</i> for the synthesis of $\hat{l}\pm 1,4$ -linked galactosides. Organic and Biomolecular Chemistry, 2020, 18, 3142-3148.	2.8	7
183	Phytanyl-Pyrophosphate-Linked Substrate for a Bacterial α-Mannosyltransferase. Biochemical and Biophysical Research Communications, 2000, 272, 290-292.	2.1	6
184	Monoquaternary ammonium derivatives inhibit growth of protozoan parasites. Parasitology International, 2008, 57, 132-137.	1.3	6
185	Regio- and stereoselective oxidation of unactivated C–H bonds with Rhodococcus rhodochrous. Beilstein Journal of Organic Chemistry, 2012, 8, 496-500.	2.2	6
186	High-throughput chemical and chemoenzymatic approaches to saccharide-coated magnetic nanoparticles for MRI. Nanoscale Advances, 2019, 1, 3597-3606.	4.6	6
187	Enzymatic Buildingâ€Block Synthesis for Solidâ€Phase Automated Glycan Assembly. Angewandte Chemie - International Edition, 2020, 59, 22456-22459.	13.8	6
188	Introduction to Glycosylation: new methodologies and applications. Organic and Biomolecular Chemistry, 2020, 18, 6979-6982.	2.8	6
189	A promiscuous glycosyltransferase generates poly-î²-1,4-glucan derivatives that facilitate mass spectrometry-based detection of cellulolytic enzymes. Organic and Biomolecular Chemistry, 2021, 19, 5529-5533.	2.8	6
190	Synthesis of Novel Acceptor Substrates for the Dolichyl Phosphate Mannose Synthase from Yeast. ChemBioChem, 2003, 4, 319-332.	2.6	5
191	Enzymatic Synthesis of Trideuterated Sialosides. Molecules, 2019, 24, 1368.	3.8	5
192	An Enzymatic Nâ€Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides. Angewandte Chemie, 2020, 132, 5346-5349.	2.0	5
193	Discovery and Biochemical Characterization of a Thermostable Glucose-1-phosphate Nucleotidyltransferase from Thermodesulfatator indicus. Protein and Peptide Letters, 2017, 24, 729-734.	0.9	5
194	Enzymatic synthesis of \hat{l}^2 -mannosyl phosphates on solid support. Chemical Communications, 2002, , 2676-2677.	4.1	4
195	In vivo anti-malarial effect of the ß-amino alcohol 1t on Plasmodium berghei. Parasitology Research, 2009, 104, 1459-1464.	1.6	4
196	Increasing the diversity of biocatalytic reactions. Current Opinion in Chemical Biology, 2011, 15, 185-186.	6.1	4
197	Biâ€enzymatic Conversion of Cinnamic Acids to 2â€Arylethylamines. ChemCatChem, 2020, 12, 995-998.	3.7	4
198	Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 2021, 22, 6988.	4.1	4

#	Article	IF	CITATIONS
199	Galactose Oxidase Enables Modular Assembly of Conjugates from Native Antibodies with High Drugâ€ŧoâ€Antibody Ratios**. ChemSusChem, 2022, 15, .	6.8	4
200	An Asymmetric Enzyme-Catalyzed Retro-Claisen Reaction for the Desymmetrization of Cyclic beta-Diketones This work was supported by the BBSRC (grants to N.J.T. and S.L.F.) and the European Commission (grant to J.G.). We also thank Mr. J. Millar and Dr. D. Uhrin for assistance with NMR spectroscopy Angewandte Chemie - International Edition, 2001, 40, 1111-1114.	13.8	4
201	Nucleotide Sequence of a Portion of the Camphor-degrading Gene Cluster fromRhodococcussp. NCIMB 9784. DNA Sequence, 2004, 15, 96-103.	0.7	3
202	Effect of Microwave Radiation on Enzymatic and Chemical Peptide Bond Synthesis on Solid Phase. International Journal of Peptides, 2009, 2009, 1-4.	0.7	3
203	S-linked sugars lost and found. Nature Chemical Biology, 2011, 7, 69-70.	8.0	3
204	Application of bio-based solvents for biocatalysed synthesis of amides with <i>Pseudomonas stutzeri</i> lipase (PSL). Pure and Applied Chemistry, 2020, 92, 579-586.	1.9	3
205	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie, 2021, 133, 18808-18813.	2.0	3
206	COS-1 cell expression and one-step affinity protein purification and activity of epitope-tagged human erythropoietin and of site-directed mutants. BBA - Proteins and Proteomics, 1997, 1340, 13-20.	2.1	2
207	Glyco-enzymatic cascades get protection. Nature Catalysis, 2019, 2, 479-480.	34.4	2
208	Enzymatic Buildingâ€Block Synthesis for Solidâ€Phase Automated Glycan Assembly. Angewandte Chemie, 2020, 132, 22642-22645.	2.0	2
209	Methods for the High Resolution Analysis of Glycoconjugates. , 2018, , 225-267.		2
210	Chemical biology. Current Opinion in Chemical Biology, 2000, 4, 357-366.	6.1	1
211	Chemical biology Paper alert. Current Opinion in Chemical Biology, 2000, 4, 1-10.	6.1	1
212	Chemical biology Paper alert. Current Opinion in Chemical Biology, 2000, 4, 125-134.	6.1	1
213	Chemical biology. Current Opinion in Chemical Biology, 2001, 5, 337-346.	6.1	1
214	Straightforward Synthesis of 2-Acetamido-2-deoxy-β-d-glucopyranosyl Esters under Microwave Conditions. Synlett, 2009, 2009, 3328-3332.	1.8	1
215	A Bifunctional Spin Label for Ligand Recognition on Surfaces. Angewandte Chemie, 2017, 129, 9577-9581.	2.0	1
		10.5	

Remote control with engineered enzymes. Science, 2019, 364, 529-529.

12.6 1

#	Article	IF	CITATIONS
217	Titelbild: Enzymkatalysierte spĀæ Modifizierungen: Besser spĀæals nie (Angew. Chem. 31/2021). Angewandte Chemie, 2021, 133, 16853-16853.	2.0	1
218	Enzyme Cascade Design: Retrosynthesis Approach. , 2021, , 7-30.		1
219	Development of a Solid Phase Array Assay for the Screening of Galactose Oxidase Activity and for Fast Identification of Inhibitors. Protein and Peptide Letters, 2017, 24, 742-746.	0.9	1
220	New Chemical Tools for Diagnosis and Treatment of Cancer. Jacs Au, 2022, 2, 1018-1019.	7.9	1
221	One‣tep Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation**. Angewandte Chemie, 2022, 134, .	2.0	1
222	Chemical biology. Current Opinion in Chemical Biology, 2002, 6, 543-550.	6.1	0
223	Baeyer—Villiger Oxidations. ChemInform, 2003, 34, no.	0.0	0
224	Oxygenation of C—H and C=C Bonds. ChemInform, 2003, 34, no.	0.0	0
225	Synthesis and Modifications of Carbohydrates Using Biotransformations. ChemInform, 2004, 35, no.	0.0	0
226	Development of new synthetic and analytical tools in glycobiotechnology. New Biotechnology, 2014, 31, S16.	4.4	0
227	Innentitelbild: Ganzzellenâ€Biokatalysator für stereoselektive Câ€Hâ€Aminierungen (Angew. Chem. 4/2016). Angewandte Chemie, 2016, 128, 1234-1234.	2.0	0
228	Fabrication and Application of Isotopically Labelled Gold Arrays for Multiplexed Peptide Analysis. ChemBioChem, 2016, 17, 2007-2011.	2.6	0
229	Innentitelbild: An Enzymatic Nâ€Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides (Angew. Chem. 13/2020). Angewandte Chemie, 2020, 132, 5006-5006.	2.0	0
230	Rücktitelbild: Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades (Angew. Chem. 34/2021). Angewandte Chemie, 2021, 133, 19040-19040.	2.0	0
231	Complete Shift in Glycosyl Donor Specificity in Mammalian, but not C. elegans β1,4â€GalT1 Y286L mutants, Enables the Synthesis of N , N â€Diacetyllactosamine. ChemCatChem, 0, , .	3.7	0
232	Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. Journal of Materials Chemistry B, 2022, 10, 5016-5027.	5.8	0