Janette E Bradley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083595/publications.pdf

Version: 2024-02-01

172457 175258 3,001 71 29 52 citations h-index g-index papers 75 75 75 2751 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Th2 Cytokines Are Associated with Reduced Worm Burdens in a Human Intestinal Helminth Infection. Journal of Infectious Diseases, 2003, 188, 1768-1775.	4.0	175
2	Review series on helminths, immune modulation and the hygiene hypothesis: Immunity against helminths and immunological phenomena in modern human populations: coevolutionary legacies?. Immunology, 2009, 126, 18-27.	4.4	166
3	Immunity To Onchocerciasis: Putative Immune Persons Produce A Thl-Like Response To Onchocerca Volvulus. Journal of Infectious Diseases, 1995, 171, 652-658.	4.0	126
4	Onchocerciasis modulates the immune response to mycobacterial antigens. Clinical and Experimental Immunology, 1999, 117, 517-523.	2.6	116
5	T Helper Cell Type 2 Responsiveness Predicts Future Susceptibility to Gastrointestinal Nematodes in Humans. Journal of Infectious Diseases, 2004, 190, 1804-1811.	4.0	110
6	microRNAs in parasites and parasite infection. RNA Biology, 2013, 10, 371-379.	3.1	108
7	Immunity, immunoregulation and the ecology of trichuriasis and ascariasis. Parasite Immunology, 2004, 26, 429-441.	1.5	104
8	Allergen-specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection. Microbes and Infection, 2005, 7, 990-996.	1.9	104
9	Intensity of Intestinal Infection with Multiple Worm Species Is Related to Regulatory Cytokine Output and Immune Hyporesponsiveness. Journal of Infectious Diseases, 2008, 197, 1204-1212.	4.0	104
10	Regulatory T Cells: A Role in the Control of Helminth-Driven Intestinal Pathology and Worm Survival. Journal of Immunology, 2009, 182, 2340-2348.	0.8	103
11	The Ov20 Protein of the Parasitic Nematode Onchocerca volvulus. Journal of Biological Chemistry, 1997, 272, 29442-29448.	3.4	95
12	Age―and Infection Intensity–Dependent Cytokine and Antibody Production in Human Trichuriasis: The Importance of IgE. Journal of Infectious Diseases, 2002, 185, 665-672.	4.0	94
13	An Immunological Marker of Tolerance to Infection in Wild Rodents. PLoS Biology, 2014, 12, e1001901.	5.6	89
14	Measuring immune system variation to help understand host-pathogen community dynamics. Parasitology, 2008, 135, 807-823.	1.5	86
15	Genetic Diversity in Cytokines Associated with Immune Variation and Resistance to Multiple Pathogens in a Natural Rodent Population. PLoS Genetics, 2011, 7, e1002343.	3.5	83
16	Immunity to Onchocerciasis: Identification of a Putatively Immune Population in a Hyperendemic Area of Ecuador. Journal of Infectious Diseases, 1994, 169, 588-594.	4.0	78
17	Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals. BMC Biology, 2009, 7, 16.	3.8	65
18	The FAR Protein Family of the Nematode Caenorhabditis elegans. Journal of Biological Chemistry, 2003, 278, 8065-8074.	3.4	63

#	Article	IF	CITATIONS
19	The analysis of immunological profiles in wild animals: a case study on immunodynamics in the field vole, <i>Microtus agrestis</i> . Molecular Ecology, 2011, 20, 893-909.	3.9	57
20	Epilepsy, retarded growth and onchocerciasis, in two areas of different endemicity of onchocerciasis in Burundi. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1997, 91, 525-527.	1.8	55
21	cDNA clones of Onchocerca volvulus low molecular weight antigens provide immunologically specific diagnostic probes. Molecular and Biochemical Parasitology, 1991, 46, 219-227.	1.1	52
22	The FAR proteins of filarial nematodes: secretion, glycosylation and lipid binding characteristics. Molecular and Biochemical Parasitology, 2002, 122, 161-170.	1.1	50
23	Characterisation of an immunodominant glycoprotein antigen of Onchocerca volvulus with homologues in other filarial nematodes and Caenorhabditis elegans. Molecular and Biochemical Parasitology, 1995, 69, 185-195.	1.1	49
24	Cytokine response profiles predict species-specific infection patterns in human GI nematodes. International Journal for Parasitology, 2004, 34, 1237-1244.	3.1	48
25	Heterogenous interspecific interactions in a host–parasite system. International Journal for Parasitology, 2006, 36, 1341-1349.	3.1	42
26	River blindness: a role for parasite retinoid-binding proteins in the generation of pathology?. Trends in Parasitology, 2001, 17, 471-475.	3.3	40
27	Geographical location influences the composition of the gut microbiota in wild house mice (Mus) Tj ETQq $1\ 1\ 0$.	7843 <u>1</u> 4 rg	BT JQverlock
28	Resistance to Onchocerca volvulus: Differential Cellular and Humoral Responses to a Recombinant Antigen, OvMBP20/11. Journal of Infectious Diseases, 1995, 172, 831-837.	4.0	32
29	Detection of Onchocerca volvulus infection in Simulium ochraceum sensu lato: comparison of a PCR assay and fly dissection in a Mexican hypoendemic community. Parasitology, 1999, 119, 613-619.	1.5	30
30	Gastrointestinal nematode infection is associated with variation in innate immune responsiveness. Microbes and Infection, 2006, 8, 487-492.	1.9	29
31	Macroparasites, innate immunity and immunoregulation: developing natural models. Trends in Parasitology, 2010, 26, 540-549.	3.3	28
32	Measuring the immune system of the threeâ \in spined stickleback â \in " investigating natural variation by quantifying immune expression in the laboratory and the wild. Molecular Ecology Resources, 2016, 16, 701-713.	4.8	28
33	Isotype-specific characterization of antibody responses to Onchocerca volvulus in putatively immune individuals. Parasite Immunology, 1995, 17, 371-380.	1.5	27
34	Onchocerca volvulus: Characterization of an Immunodominant Hypodermal Antigen Present in Adult and Larval Parasites. Experimental Parasitology, 1993, 77, 414-424.	1.2	26
35	The role of parasitic infections in atopic diseases in rural schoolchildren. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 996-1001.	5.7	26
36	Differential regulation of antigen-specific IgG4 and IgE antibodies in response to recombinant filarial proteins. International Immunology, 1996, 8, 1841-1848.	4.0	24

#	Article	IF	CITATIONS
37	Comparison of serological and parasitological assessments of Onchocerca volvulus transmission after 7 years of mass ivermectin treatment in Mexico. Tropical Medicine and International Health, 1999, 4, 98-104.	2.3	24
38	Phyletic Distribution of Fatty Acid-Binding Protein Genes. PLoS ONE, 2013, 8, e77636.	2.5	23
39	Associations between filarial and gastrointestinal nematodes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2005, 99, 301-312.	1.8	22
40	Discovery of a new focus of human onchocerciasis in central Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93, 235-239.	1.8	21
41	Isolates of Trichuris muris elicit different adaptive immune responses in their murine host. Parasite Immunology, 2005, 27, 69-78.	1.5	21
42	Effects of laboratory domestication on the rodent gut microbiome. ISME Communications, 2021, 1 , .	4.2	21
43	Antibody detection tests for Onchocerca volvulus: comparison of the sensitivityof a cocktail of recombinant antigens used in the indirect enzyme-linked immunosorbent assay with a rapid-format antibody card test. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 539-541.	1.8	19
44	Biochemical and immunochemical characterisation of a 20-kilodalton complex of surface-associated antigens from adult Onchocerca gutturosa filarial nematodes. Molecular and Biochemical Parasitology, 1989, 34, 197-208.	1.1	18
45	Onchocerca volvulus: characterization of a highly immunogenic Gln-rich protein1Note: Nucleotide sequence data reported in this paper have been submitted to the GenBankâ,,¢ data base with the accession numbers U66459 and U85395.1. Molecular and Biochemical Parasitology, 1997, 90, 55-68.	1.1	17
46	A comparison of cellular and humoral immune responses to trichuroid derived antigens in human trichuriasis. Parasite Immunology, 2002, 24, 83-93.	1.5	17
47	From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS ONE, 2017, 12, e0183450.	2.5	17
48	Macroparasites at peripheral sites of infection are major and dynamic modifiers of systemic antimicrobial pattern recognition responses. Molecular Ecology, 2013, 22, 2810-2826.	3.9	16
49	The effect of ivermectin treatment on the antibody response to antigens of Onchocerca volvulus. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1994, 88, 456-460.	1.8	14
50	Heterogeneity of IgG antibody responses to cloned Onchocerca volvulus antigens in microfiladermia positive individuals from Esmeraldas Province, Ecuador. Parasite Immunology, 1994, 16, 201-209.	1.5	13
51	Antibody responses in onchocerciasis as a function of age and infection intensity. Parasite Immunology, 2001, 23, 509-516.	1.5	13
52	Endemic Hantavirus in Field Voles, Northern England. Emerging Infectious Diseases, 2017, 23, 1033-1035.	4.3	13
53	A candidate tolerance gene identified in a natural population of field voles (<i>Microtus agrestis</i>). Molecular Ecology, 2018, 27, 1044-1052.	3.9	13
54	Onchocerciasis hyperendemic in the UnturÃ;n Mountains: the value of recombinant antigens in describing a new transmission area in southern Venezuela. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93, 25-30.	1.8	12

#	Article	IF	CITATIONS
55	Physiological, but not fitness, effects of two interacting haemoparasitic infections in a wild rodent. International Journal for Parasitology, 2018, 48, 463-471.	3.1	12
56	Failure of ES-62 to inhibit T-helper type 1 responses to other filarial nematode antigens. Parasite Immunology, 2008, 30, 304-308.	1.5	11
57	No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback () Tj ETQq1 1 ().784314 3.6	rgBT /Overlo
58	Immune state is associated with natural dietary variation in wild mice <i>Mus musculus domesticus </i> . Functional Ecology, 2019, 33, 1425-1435.	3.6	11
59	Application of an enzyme-linked immunosorbent assay to detect antibodies to Onchocerca volvulus on filter-paper blood spots: effect of storage and temperature on antibody decay. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93, 523-524.	1.8	10
60	A classification of tasks for the systematic study of immune response using functional genomics data. Parasitology, 2006, 132, 157.	1.5	10
61	The role of a recombinant hybrid protein based ELISA for the serodiagnosis of Onchocerca volvulus. Journal of Clinical Pathology, 2007, 61, 347-351.	2.0	10
62	Eda haplotypes in three-spined stickleback are associated with variation in immune gene expression. Scientific Reports, 2017, 7, 42677.	3.3	10
63	Temporal Anomalies in Immunological Gene Expression in a Time Series of Wild Mice: Signature of an Epidemic?. PLoS ONE, 2011, 6, e20070.	2.5	10
64	Effects of an Onchocerca-derived cysteine protease inhibitor on microfilariae in their simuliid vector. Parasitology, 1999, 118, 305-310.	1.5	8
65	Abiotic environmental variation drives virulence evolution in a fish host–parasite geographic mosaic. Functional Ecology, 2017, 31, 2138-2146.	3.6	8
66	A geneticsâ€based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (<i>Gasterosteus aculeatus</i>). Molecular Ecology, 2018, 27, 3174-3191.	3.9	7
67	A lesson from the wild: The natural state of eosinophils is Ly6G ^{hi} . Immunology, 2021, 164, 766-776.	4.4	7
68	Prior exposure to long-day photoperiods alters immune responses and increases susceptibility to parasitic infection in stickleback. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201017.	2.6	5
69	Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent. Scientific Reports, 2020, 10, 7444.	3.3	3
70	The allergy epidemic: can helminths supply the antidote?. Clinical and Experimental Allergy, 2010, 40, 1586-1589.	2.9	2
71	Wild Immunology. Parasite Immunology, 2015, 37, 217-219.	1.5	1