Mitchell F Roitman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9083513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine Operates as a Subsecond Modulator of Food Seeking. Journal of Neuroscience, 2004, 24, 1265-1271.	3.6	635
2	Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nature Neuroscience, 2007, 10, 1020-1028.	14.8	570
3	Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nature Neuroscience, 2008, 11, 1376-1377.	14.8	538
4	Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output. Neuron, 2005, 45, 587-597.	8.1	394
5	Rapid Dopamine Signaling in the Nucleus Accumbens during Contingent and Noncontingent Cocaine Administration. Neuropsychopharmacology, 2005, 30, 853-863.	5.4	203
6	Inhibition of PTP1B by Trodusquemine (MSIâ€1436) Causes Fatâ€specific Weight Loss in Dietâ€induced Obese Mice. Obesity, 2010, 18, 1516-1523.	3.0	176
7	Ghrelin Acts as an Interface between Physiological State and Phasic Dopamine Signaling. Journal of Neuroscience, 2014, 34, 4905-4913.	3.6	154
8	Primary food reward and rewardâ€predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. European Journal of Neuroscience, 2011, 34, 1997-2006.	2.6	147
9	Endocannabinoids Shape Accumbal Encoding of Cue-Motivated Behavior via CB1 Receptor Activation in the Ventral Tegmentum. Neuron, 2012, 73, 360-373.	8.1	139
10	New Insights into the Specificity and Plasticity of Reward and Aversion Encoding in the Mesolimbic System. Journal of Neuroscience, 2013, 33, 17569-17576.	3.6	139
11	Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology, 2010, 210, 241-252.	3.1	127
12	Encoding of Aversion by Dopamine and the Nucleus Accumbens. Frontiers in Neuroscience, 2012, 6, 137.	2.8	123
13	Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. European Journal of Neuroscience, 2006, 23, 1341-1351.	2.6	118
14	Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. Journal of Neurochemistry, 2012, 121, 252-262.	3.9	115
15	Regional specificity in the realâ€ŧime development of phasic dopamine transmission patterns during acquisition of a cue–cocaine association in rats. European Journal of Neuroscience, 2009, 30, 1889-1899.	2.6	108
16	Induction of a Salt Appetite Alters Dendritic Morphology in Nucleus Accumbens and Sensitizes Rats to Amphetamine. Journal of Neuroscience, 2002, 22, RC225-RC225.	3.6	96
17	c-Fos Induction in Rat Brainstem in Response to Ethanol- and Lithium Chloride-Induced Conditioned Taste Aversions. Alcoholism: Clinical and Experimental Research, 1996, 20, 1023-1028.	2.4	95
18	Glucagon-Like Peptide-1 Receptor Activation in the Nucleus Accumbens Core Suppresses Feeding by Increasing Glutamatergic AMPA/Kainate Signaling. Journal of Neuroscience, 2014, 34, 6985-6992.	3.6	91

MITCHELL F ROITMAN

#	Article	IF	CITATIONS
19	Prolonged High Fat Diet Reduces Dopamine Reuptake without Altering DAT Gene Expression. PLoS ONE, 2013, 8, e58251.	2.5	87
20	Amylin Modulates the Mesolimbic Dopamine System to Control Energy Balance. Neuropsychopharmacology, 2015, 40, 372-385.	5.4	82
21	A descending dopamine pathway conserved from basal vertebrates to mammals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2440-9.	7.1	74
22	Sucroseâ€predictive cues evoke greater phasic dopamine release than saccharinâ€predictive cues. Synapse, 2012, 66, 346-351.	1.2	73
23	Illicit dopamine transients: Reconciling actions of abused drugs. Trends in Neurosciences, 2014, 37, 200-210.	8.6	72
24	Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3235-42.	7.1	71
25	Physiological state gates acquisition and expression of mesolimbic reward prediction signals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1943-1948.	7.1	70
26	Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by foodâ€predictive stimuli. Journal of Neurochemistry, 2015, 133, 844-856.	3.9	68
27	Hedonic and nucleus accumbens neural responses to a natural reward are regulated by aversive conditioning. Learning and Memory, 2010, 17, 539-546.	1.3	67
28	Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Research, 2000, 870, 102-108.	2.2	62
29	Taste uncoupled from nutrition fails to sustain the reinforcing properties of food. European Journal of Neuroscience, 2012, 36, 2533-2546.	2.6	58
30	Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiology and Behavior, 2017, 176, 17-25.	2.1	54
31	Riskâ€preference differentiates orbitofrontal cortex responses to freely chosen reward outcomes. European Journal of Neuroscience, 2010, 31, 1492-1500.	2.6	51
32	Nicotinic receptors regulate the dynamic range of dopamine release in vivo. Journal of Neurophysiology, 2014, 111, 103-111.	1.8	47
33	Dopamine and sodium appetite: Antagonists suppress sham drinking of NaC1 solutions in the rat Behavioral Neuroscience, 1997, 111, 606-611.	1.2	45
34	Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release. Neuropsychopharmacology, 2016, 41, 989-1002.	5.4	44
35	Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab on A Chip, 2012, 12, 2403.	6.0	43
36	Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons. Frontiers in Psychiatry, 2018, 9, 410.	2.6	40

MITCHELL F ROITMAN

#	Article	IF	CITATIONS
37	Nucleus accumbens shell, but not core, tracks motivational value of salt. Journal of Neurophysiology, 2011, 106, 1537-1544.	1.8	39
38	Phasic dopamine responses to a food-predictive cue are suppressed by the glucagon-like peptide-1 receptor agonist Exendin-4. Physiology and Behavior, 2020, 215, 112771.	2.1	36
39	Females are less sensitive than males to the motivational- and dopamine-suppressing effects of kappa opioid receptor activation. Neuropharmacology, 2019, 146, 231-241.	4.1	34
40	Amiloride-sensitive sodium signals and salt appetite: multiple gustatory pathways. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1732-R1738.	1.8	32
41	The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors. Neuropsychopharmacology, 2016, 41, 906-915.	5.4	30
42	Ingestive taste reactivity as licking behavior. Neuroscience and Biobehavioral Reviews, 1995, 19, 89-98.	6.1	28
43	Sodium depletion and aldosterone decrease dopamine transporter activity in nucleus accumbens but not striatum. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1339-R1345.	1.8	28
44	The area postrema (AP) and the parabrachial nucleus (PBN) are important sites for salmon calcitonin (sCT) to decrease evoked phasic dopamine release in the nucleus accumbens (NAc). Physiology and Behavior, 2017, 176, 9-16.	2.1	25
45	Dopamine mediation of the feeding response to violations of spatial and temporal expectancies. Behavioural Brain Research, 2001, 122, 193-199.	2.2	22
46	Challenges to Body Fluid Homeostasis Differentially Recruit Phasic Dopamine Signaling in a Taste-Selective Manner. Journal of Neuroscience, 2018, 38, 6841-6853.	3.6	22
47	Thirst recruits phasic dopamine signaling through subfornical organ neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30744-30754.	7.1	22
48	Optical suppression of drug-evoked phasic dopamine release. Frontiers in Neural Circuits, 2014, 8, 114.	2.8	20
49	Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements. Journal of Neuroscience, 2020, 40, 8478-8490.	3.6	17
50	Central oxytocin signaling inhibits food reward-motivated behaviors and VTA dopamine responses to food-predictive cues in male rats. Hormones and Behavior, 2020, 126, 104855.	2.1	14
51	MSI-1436 reduces acute food intake without affecting dopamine transporter activity. Pharmacology Biochemistry and Behavior, 2010, 97, 138-143.	2.9	13
52	Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai. Physiology and Behavior, 2017, 178, 21-27.	2.1	9
53	Mode of Sucrose Delivery Alters Reward-Related Phasic Dopamine Signals in Nucleus Accumbens. ACS Chemical Neuroscience, 2019, 10, 1900-1907.	3.5	4
54	Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem. Brain Research, 2017, 1655, 252-260.	2.2	3

#	Article	IF	CITATIONS
55	Persistent hunger for sodium makes brain stimulation not so sweet: Theoretical comment on Morris et al. (2006) Behavioral Neuroscience, 2006, 120, 744-747.	1.2	2
56	Central leptin signaling transmits positive valence. Brain Research, 2019, 1724, 146441.	2.2	2