List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9082957/publications.pdf Version: 2024-02-01

PALLE H HUANC

#	Article	IF	CITATIONS
1	EGFR Exon 20 Insertion Mutations in Sinonasal Squamous Cell Carcinoma. Cancers, 2022, 14, 394.	3.7	7
2	KIT Exon 9-Mutated Gastrointestinal Stromal Tumours: Biology and Treatment. Chemotherapy, 2022, 67, 81-90.	1.6	10
3	Proteomic and Metabolomic Profiling in Soft Tissue Sarcomas. Current Treatment Options in Oncology, 2022, 23, 78-88.	3.0	10
4	Current Status and Future Directions of Immunotherapies in Soft Tissue Sarcomas. Biomedicines, 2022, 10, 573.	3.2	8
5	Amivantamab for the treatment of <i>EGFR</i> exon 20 insertion mutant non-small cell lung cancer. Expert Review of Anticancer Therapy, 2022, 22, 3-16.	2.4	9
6	Machine learning for rhabdomyosarcoma histopathology. Modern Pathology, 2022, 35, 1193-1203.	5.5	9
7	Proteomic Profiling Identifies Co-Regulated Expression of Splicing Factors as a Characteristic Feature of Intravenous Leiomyomatosis. Cancers, 2022, 14, 2907.	3.7	2
8	Systemic treatment of advanced clear cell sarcoma: results from a retrospective international series from the World Sarcoma Network. ESMO Open, 2022, 7, 100522.	4.5	11
9	Data-independent acquisition mass spectrometry (DIA-MS) for proteomic applications in oncology. Molecular Omics, 2021, 17, 29-42.	2.8	93
10	Sirolimus for patients with progressive epithelioid hemangioendothelioma. Cancer, 2021, 127, 504-506.	4.1	3
11	3D Functional Genomics Screens Identify CREBBP as a Targetable Driver in Aggressive Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 847-859.	0.9	7
12	Unmet Medical Needs and Future Perspectives for Leiomyosarcoma Patients—A Position Paper from the National LeioMyoSarcoma Foundation (NLMSF) and Sarcoma Patients EuroNet (SPAEN). Cancers, 2021, 13, 886.	3.7	17
13	Predictive and prognostic transcriptomic biomarkers in soft tissue sarcomas. Npj Precision Oncology, 2021, 5, 17.	5.4	23
14	Tackling Drug Resistance in EGFR Exon 20 Insertion Mutant Lung Cancer. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 301-317.	0.7	11
15	Next-generation sequencing for the management of sarcomas with no known driver mutations. Current Opinion in Oncology, 2021, 33, 315-322.	2.4	13
16	Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells, 2021, 10, 1154.	4.1	21
17	Clinical management and outcomes of primary ovarian leiomyosarcoma – Experience from a sarcoma specialist unit. Gynecologic Oncology Reports, 2021, 36, 100737.	0.6	9
18	Proteomic profiling of soft tissue sarcomas with SWATH mass spectrometry. Journal of Proteomics, 2021, 241, 104236.	2.4	12

#	Article	IF	CITATIONS
19	Epithelioid hemangioendothelioma, an ultra-rare cancer: a consensus paper from the community of experts. ESMO Open, 2021, 6, 100170.	4.5	65
20	Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells, 2021, 10, 1533.	4.1	14
21	Pharmacotherapy for liposarcoma: current and emerging synthetic treatments. Future Oncology, 2021, 17, 2659-2670.	2.4	6
22	Solitary fibrous tumor: molecular hallmarks and treatment for a rare sarcoma. Future Oncology, 2021, 17, 3627-3636.	2.4	15
23	Gastrointestinal leiomyosarcoma demonstrate a predilection for distant recurrence and poor response to systemic treatments. European Journal of Surgical Oncology, 2021, 47, 2595-2601.	1.0	3
24	Future Directions in the Treatment of Osteosarcoma. Cells, 2021, 10, 172.	4.1	102
25	Advances in the proteomic profiling of the matrisome and adhesome. Expert Review of Proteomics, 2021, 18, 781-794.	3.0	16
26	The perplexing role of immuno-oncology drugs in osteosarcoma. Journal of Bone Oncology, 2021, 31, 100400.	2.4	4
27	The Extracellular Matrix in Soft Tissue Sarcomas: Pathobiology and Cellular Signalling. Frontiers in Cell and Developmental Biology, 2021, 9, 763640.	3.7	7
28	Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Seminars in Cancer Biology, 2020, 61, 167-179.	9.6	302
29	Proteomic research in sarcomas – current status and future opportunities. Seminars in Cancer Biology, 2020, 61, 56-70.	9.6	50
30	Optimal Clinical Management and the Molecular Biology of Angiosarcomas. Cancers, 2020, 12, 3321.	3.7	15
31	Efficacy of Gemcitabine-based Chemotherapy in Clear Cell Sarcoma of Soft Tissue. Anticancer Research, 2020, 40, 7003-7007.	1.1	3
32	Targeting the Src Pathway Enhances the Efficacy of Selective FGFR Inhibitors in Urothelial Cancers with FGFR3 Alterations. International Journal of Molecular Sciences, 2020, 21, 3214.	4.1	11
33	A mouse SWATH-MS reference spectral library enables deconvolution of species-specific proteomic alterations in human tumour xenografts. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	16
34	Tropomyosin receptor kinase inhibitors in the management of sarcomas. Current Opinion in Oncology, 2020, 32, 307-313.	2.4	9
35	Translational genomics for rare cancers: Challenges and opportunity. Seminars in Cancer Biology, 2020, 61, iii-iv.	9.6	0
36	ls the IDH Mutation a Good Target for Chondrosarcoma Treatment?. Current Molecular Biology Reports, 2020, 6, 1-9.	1.6	20

#	Article	IF	CITATIONS
37	Avapritinib in the treatment of PDGFRA exon 18 mutated gastrointestinal stromal tumors. Future Oncology, 2020, 16, 1641-1648.	2.4	7
38	The adequacy of tissue microarrays in the assessment of inter- and intra-tumoural heterogeneity of infiltrating lymphocyte burden in leiomyosarcoma. Scientific Reports, 2019, 9, 14602.	3.3	22
39	The landscape of tyrosine kinase inhibitors in sarcomas: looking beyond pazopanib. Expert Review of Anticancer Therapy, 2019, 19, 971-991.	2.4	31
40	Pazopanib in advanced soft tissue sarcomas. Signal Transduction and Targeted Therapy, 2019, 4, 16.	17.1	57
41	Pazopanib in patients with advanced intermediate-grade or high-grade liposarcoma. Expert Opinion on Investigational Drugs, 2019, 28, 505-511.	4.1	13
42	Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduction and Targeted Therapy, 2019, 4, 5.	17.1	231
43	Negative phase III trials announce the need for biomarkers in sarcoma. European Journal of Cancer, 2019, 123, 81-82.	2.8	1
44	Fibroblastic Reticular Cells Control Conduit Matrix Deposition during Lymph Node Expansion. Cell Reports, 2019, 29, 2810-2822.e5.	6.4	58
45	Ewing-like sarcomas: New molecular diagnoses in need of optimized treatment approaches. Indian Journal of Medical Research, 2019, 150, 521.	1.0	1
46	Olaratumab in soft tissue sarcoma – Current status and future perspectives. European Journal of Cancer, 2018, 92, 33-39.	2.8	16
47	SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. Journal of Proteomics, 2018, 189, 11-22.	2.4	75
48	Quantitative phosphoproteomic analysis of acquired cancer drug resistance to pazopanib and dasatinib. Journal of Proteomics, 2018, 170, 130-140.	2.4	27
49	Clinical and Molecular Spectrum of Liposarcoma. Journal of Clinical Oncology, 2018, 36, 151-159.	1.6	183
50	Spatial localisation of Discoidin Domain Receptor 2 (DDR2) signalling is dependent on its collagen binding and kinase activity. Biochemical and Biophysical Research Communications, 2018, 501, 124-130.	2.1	2
51	Exploiting vulnerabilities in cancer signalling networks to combat targeted therapy resistance. Essays in Biochemistry, 2018, 62, 583-593.	4.7	25
52	Primary Cilia Mediate Diverse Kinase Inhibitor Resistance Mechanisms in Cancer. Cell Reports, 2018, 23, 3042-3055.	6.4	77
53	Novel therapeutic approaches in chondrosarcoma. Future Oncology, 2017, 13, 637-648.	2.4	96
54	Advances in mass spectrometry based strategies to study receptor tyrosine kinases. IUCrJ, 2017, 4, 119-130.	2.2	13

#	Article	IF	CITATIONS
55	Exploiting Synthetic Lethality and Network Biology to Overcome EGFR Inhibitor Resistance in Lung Cancer. Journal of Molecular Biology, 2017, 429, 1767-1786.	4.2	14
56	Phase III Soft Tissue Sarcoma Trials: Success or Failure?. Current Treatment Options in Oncology, 2017, 18, 19.	3.0	19
57	Exploiting receptor tyrosine kinase co-activation for cancer therapy. Drug Discovery Today, 2017, 22, 72-84.	6.4	30
58	Targeting SWI/SNF mutant cancers with tyrosine kinase inhibitor therapy. Expert Review of Anticancer Therapy, 2017, 17, 1-3.	2.4	11
59	Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines. Methods in Molecular Biology, 2017, 1636, 253-262.	0.9	1
60	Targeted Analysis of Phosphotyrosine Signaling by Multiple Reaction Monitoring Mass Spectrometry. Methods in Molecular Biology, 2017, 1636, 263-281.	0.9	3
61	Progress and impact of clinical phosphoproteomics on precision oncology. Translational Cancer Research, 2017, 6, S1108-S1114.	1.0	1
62	Systematic analysis of tumour cell-extracellular matrix adhesion identifies independent prognostic factors in breast cancer. Oncotarget, 2016, 7, 62939-62953.	1.8	26
63	Expanding the computational toolbox for interrogating cancer kinomes. Pharmacogenomics, 2016, 17, 95-97.	1.3	3
64	Retinoblastoma family proteins: New players in DNA repair by non-homologous end-joining. Molecular and Cellular Oncology, 2016, 3, e1053596.	0.7	5
65	Drug repositioning in sarcomas and other rare tumors. EBioMedicine, 2016, 6, 4-5.	6.1	4
66	Discoidin Domain Receptor Signalling Networks. , 2016, , 201-216.		0
67	Threeâ€dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic <scp>MCF10</scp> model. Journal of Pathology, 2016, 240, 315-328.	4.5	35
68	Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors. Cell Reports, 2016, 17, 1265-1275.	6.4	44
69	Phosphoproteomics in translational research: a sarcoma perspective. Annals of Oncology, 2016, 27, 787-794.	1.2	34
70	Alterations in the phosphoproteomic profile of cells expressing a non-functional form of the SHP2 phosphatase. New Biotechnology, 2016, 33, 524-536.	4.4	7
71	Comparative proteomic assessment of matrisome enrichment methodologies. Biochemical Journal, 2016, 473, 3979-3995.	3.7	41
72	Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining. Cell Reports, 2015, 10, 2006-2018.	6.4	62

#	Article	IF	CITATIONS
73	RB in DNA repair. Oncotarget, 2015, 6, 20746-20747.	1.8	12
74	Glycosylation at Asn211 Regulates the Activation State of the Discoidin Domain Receptor 1 (DDR1). Journal of Biological Chemistry, 2014, 289, 9275-9287.	3.4	33
75	Discoidin domain receptors: a proteomic portrait. Cellular and Molecular Life Sciences, 2014, 71, 3269-3279.	5.4	28
76	Discoidin Domain Receptor 2 Signaling Networks and Therapy in Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 900-904.	1.1	40
77	Discoidin Domain Receptors: Unique Receptor Tyrosine Kinases in Collagen-mediated Signaling. Journal of Biological Chemistry, 2013, 288, 7430-7437.	3.4	182
78	Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochemical Journal, 2013, 454, 501-513.	3.7	68
79	The Pathobiology of Collagens in Glioma. Molecular Cancer Research, 2013, 11, 1129-1140.	3.4	121
80	Phosphoproteomic analysis identifies insulin enhancement of discoidin domain receptor 2 phosphorylation. Cell Adhesion and Migration, 2013, 7, 161-164.	2.7	26
81	Phosphoproteomic studies of receptor tyrosine kinases: future perspectives. Molecular BioSystems, 2012, 8, 1100-1107.	2.9	15
82	Dacomitinib. Drugs of the Future, 2012, 37, 393.	0.1	3
82 83	Dacomitinib. Drugs of the Future, 2012, 37, 393. Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209.	0.1 2.5	3 122
	Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by		
83	Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209. A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma.	2.5	122
83 84	Discoidin Domain Receptors Promote α1βI- and α2βI-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209. A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism.	2.5 12.4	122 54
83 84 85	 Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209. A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene, 2010, 29, 5850-5860. 	2.5 12.4 5.9	122 54 58
83 84 85 86	 Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209. A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47. EGFRVIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene, 2010, 29, 5850-5860. Receptor Tyrosine Kinase Coactivation Networks in Cancer. Cancer Research, 2010, 70, 3857-3860. Phosphotyrosine signaling analysis of site-specific mutations on EGFRVIII identifies determinants 	2.5 12.4 5.9 0.9	122 54 58 161
83 84 85 86 87	Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209. A HIF-Regulated VHL-PTP1B-Src Signaling Axis Identifies a Therapeutic Target in Renal Cell Carcinoma. Science Translational Medicine, 2011, 3, 85ra47. EGFRvIV: a previously uncharacterized oncogenic mutant reveals a kinase autoinhibitory mechanism. Oncogene, 2010, 29, 5850-5860. Receptor Tyrosine Kinase Coactivation Networks in Cancer. Cancer Research, 2010, 70, 3857-3860. Phosphotyrosine signaling analysis of site-specific mutations on ECFRvIII identifies determinants governing glioblastoma cell growth. Molecular BioSystems, 2010, 6, 1227.	2.5 12.4 5.9 0.9 2.9	122 54 58 161 40

#	Article	IF	CITATIONS
91	Combinatorial Therapeutic Strategies for Blocking Kinase Pathways in Brain Tumors. , 2009, , 953-975.		1
92	Phosphoproteomics: Unraveling the Signaling Web. Molecular Cell, 2008, 31, 777-781.	9.7	50
93	Uncovering Therapeutic Targets FOR Glioblastoma: A Systems Biology Approach. Cell Cycle, 2007, 6, 2750-2754.	2.6	63
94	Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12867-12872.	7.1	365
95	14-3-3Ïf controls mitotic translation to facilitate cytokinesis. Nature, 2007, 446, 329-332.	27.8	217
96	Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We?. Frontiers in Oncology, 0, 12, .	2.8	6