
Xinzhou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9082857/publications.pdf Version: 2024-02-01

XINZHOU MANC

#	Article	IF	CITATIONS
1	Understanding the impact of wood type and moisture on the bonding strength of glued wood. Wood Material Science and Engineering, 2023, 18, 303-313.	2.3	3
2	Multi-scale investigation of the mechanical properties of Loblolly pine wood at elevated temperature. Wood Material Science and Engineering, 2023, 18, 517-524.	2.3	3
3	Investigation of the relationship between surface colour, contact angle and chemical properties of heat-treated bamboo. Wood Material Science and Engineering, 2023, 18, 783-791.	2.3	6
4	Effect of the nano-titanium dioxide (nano-TiO ₂) coating on the photoaging properties of thermally treated bamboo. Wood Material Science and Engineering, 2022, 17, 895-904.	2.3	10
5	Comparison of the fabrication process and macro and micro properties of two types of crack-free, flatten bamboo board. Construction and Building Materials, 2022, 317, 125949.	7.2	23
6	Change in Micro-Morphology and Micro-Mechanical Properties of Thermally Modified Moso Bamboo. Polymers, 2022, 14, 646.	4.5	8
7	Study on Bamboo Longitudinal Flattening Technology. Polymers, 2022, 14, 816.	4.5	8
8	Effects of the combination of compression and impregnation with phenolic resin on the dimensional stability in the multiscale wood structure of Chinese fir. Construction and Building Materials, 2022, 327, 126960.	7.2	17
9	Bamboo flattening technology ebables efficient and value-added utilization of bamboo in the manufacture of furniture and engineered composites. Composites Part B: Engineering, 2022, 242, 110097.	12.0	36
10	Bamboo flattening technique: a literature and patent review. European Journal of Wood and Wood Products, 2021, 79, 1035-1048.	2.9	72
11	Multi-scale characterization of the effect of saturated steam on the macroscale properties and surface changes of moso bamboo. Materials Express, 2021, 11, 740-748.	0.5	8
12	Multi-scale evaluation of the effect of saturated steam on the micromechanical properties of Moso bamboo. Holzforschung, 2021, 75, 1052-1060.	1.9	21
13	Temperature-Dependent Creep Behavior and Quasi-Static Mechanical Properties of Heat-Treated Wood. Forests, 2021, 12, 968.	2.1	8
14	A new approach for fabricating crack-free, flattened bamboo board and the study of its macro-/micro-properties. European Journal of Wood and Wood Products, 2021, 79, 1531-1540.	2.9	26
15	Understanding the effect of growth ring orientation on the compressive strength perpendicular to the grain of thermally treated wood. Wood Science and Technology, 2021, 55, 1439-1456.	3.2	9
16	New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii. Cellulose, 2021, 28, 9943-9957.	4.9	3
17	Multi-Scale Analysis of Changes in Crack-Free Flattened Moso Bamboo After Saturated Steam Treatment and Flattening Process. Science of Advanced Materials, 2021, 13, 1259-1267.	0.7	5
18	Preparation of crack-free, non-notched, flattened bamboo board and its physical and mechanical properties. Industrial Crops and Products, 2021, 174, 114218.	5.2	26

XINZHOU WANG

#	Article	IF	CITATIONS
19	Quantitative Evaluation of the Influence of Densification Process on Bamboo Cell Walls. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1296-1302.	0.5	3
20	Characterization of the Influence of Heat Compression on Bamboo Cell Walls by Nanoindentation. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1436-1443.	0.5	3
21	Determination of the Effects of Superheated Steam on Microstructure and Micromechanical Properties of Bamboo Cell Walls Using Quasi-Static Nanoindentation. Forests, 2021, 12, 1742.	2.1	9
22	Effects of One-Step Hot Oil Treatment on the Physical, Mechanical, and Surface Properties of Bamboo Scrimber. Molecules, 2020, 25, 4488.	3.8	21
23	Multi-scale characterization of the thermal – mechanically isolated bamboo fiber bundles and its potential application on engineered composites. Construction and Building Materials, 2020, 262, 120866.	7.2	23
24	Effect of high-temperature saturated steam treatment on the physical, chemical, and mechanical properties of moso bamboo. Journal of Wood Science, 2020, 66, .	1.9	47
25	Multi-Scale Evaluation of the Effect of Phenol Formaldehyde Resin Impregnation on the Dimensional Stability and Mechanical Properties of Pinus Massoniana Lamb Forests, 2019, 10, 646.	2.1	31
26	Effect of Phenol Formaldehyde Resin Penetration on the Quasi-Static and Dynamic Mechanics of Wood Cell Walls Using Nanoindentation. Nanomaterials, 2019, 9, 1409.	4.1	30
27	Effects of saturated steam pretreatment on the drying quality of moso bamboo culms. European Journal of Wood and Wood Products, 2019, 77, 949-951.	2.9	29
28	Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI). Holzforschung, 2018, 72, 301-309.	1.9	27
29	Effects of accelerated aging treatment on the microstructure and mechanics of wood-resin interphase. Holzforschung, 2018, 72, 235-241.	1.9	13
30	Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (<i>Pinus massoniana</i> Lamb.). Holzforschung, 2018, 72, 1063-1070.	1.9	61
31	Temperature-dependent mechanical properties of wood-adhesive bondline evaluated by nanoindentation. Journal of Adhesion, 2017, 93, 640-656.	3.0	22
32	Incorporation of graphitic nanoâ€filler and poly(lactic acid) in fused deposition modeling. Journal of Applied Polymer Science, 2017, 134, .	2.6	66
33	Multi-scale evaluation of the effects of nanoclay on the mechanical properties of wood/phenol formaldehyde bondlines. International Journal of Adhesion and Adhesives, 2017, 74, 92-99.	2.9	26
34	Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling. Materials and Design, 2017, 130, 59-68.	7.0	105
35	The effects of thermal treatment on the nanomechanical behavior of bamboo (<i>Phyllostachys) Tj ETQq1 1 0.7 Holzforschung, 2017, 71, 129-135.</i>	84314 rgB ⁻ 1.9	T /Overlock 34
36	Contributions of Basic Chemical Components to the Mechanical Behavior of Wood Fiber Cell Walls as Evaluated by Nanoindentation. BioResources, 2016, 11, .	1.0	13

XINZHOU WANG

#	Article	IF	CITATIONS
37	In situ measurement of heat-treated wood cell wall at elevated temperature by nanoindentation. Industrial Crops and Products, 2016, 87, 142-149.	5.2	35
38	In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy. RSC Advances, 2016, 6, 76318-76324.	3.6	52
39	Investigating the nanomechanical behavior of thermosetting polymers using high-temperature nanoindentation. European Polymer Journal, 2015, 70, 360-370.	5.4	11
40	Optimization of cellulose nanofibrils carbon aerogel fabrication using response surface methodology. European Polymer Journal, 2015, 73, 137-148.	5.4	29
41	Evaluation of the effects of compression combined with heat treatment by nanoindentation (NI) of poplar cell walls. Holzforschung, 2014, 68, 167-173.	1.9	43
42	Nanoscale Characterization of Reed Stalk Fiber Cell Walls. BioResources, 2013, 8, .	1.0	9
43	Study on Physicochemical Properties and Potential Applications of Chemically Treated Luffa Sponge Fibers. Journal of Natural Fibers, 0, , 1-11.	3.1	0