Ana Campa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9082184/publications.pdf Version: 2024-02-01

ANIA CANADA

#	Article	IF	CITATIONS
1	A Core Set of Snap Bean Genotypes Established by Phenotyping a Large Panel Collected in Europe. Plants, 2022, 11, 577.	3.5	6
2	GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 2021, 21, 184.	3.6	20
3	Phenolic Content and Antioxidant Activity in Seeds of Common Bean (Phaseolus vulgaris L.). Foods, 2021, 10, 864.	4.3	30
4	Variation of Morphological, Agronomic and Chemical Composition Traits of Local Hazelnuts Collected in Northern Spain. Frontiers in Plant Science, 2021, 12, 659510.	3.6	6
5	Dissecting the genetic control of seed coat color in a RIL population of common bean (Phaseolus) Tj ETQq1 1 0.	784314 rg	gBT_/Overlock
6	Pod indehiscence in common bean is associated with the fine regulation of <i>PvMYB26</i> . Journal of Experimental Botany, 2021, 72, 1617-1633.	4.8	29
7	Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 2020, 40, 1.	2.1	8
8	Characterization of extractable phenolic profile of common bean seeds (Phaseolus vulgaris L.) in a Spanish diversity panel. Food Research International, 2020, 138, 109713.	6.2	13
9	Genome-Wide Association Study (GWAS) for Resistance to Sclerotinia sclerotiorum in Common Bean. Genes, 2020, 11, 1496.	2.4	10
10	Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS ONE, 2019, 14, e0212298.	2.5	28
11	Physicochemical characterization of blueberry (Vaccinium spp.) juices from 55 cultivars grown in Northern Spain. Acta Alimentaria, 2019, 48, 260-268.	0.7	1
12	Genetic Diversity, Population Structure, and Linkage Disequilibrium in a Spanish Common Bean Diversity Panel Revealed through Genotyping-by-Sequencing. Genes, 2018, 9, 518.	2.4	32
13	Genetic diversity assessed by genotyping by sequencing (GBS) and for phenological traits in blueberry cultivars. PLoS ONE, 2018, 13, e0206361.	2.5	21
14	Gene coding for an elongation factor is involved in resistance against powdery mildew in common bean. Theoretical and Applied Genetics, 2017, 130, 849-860.	3.6	10
15	Identification of Clusters that Condition Resistance to Anthracnose in the Common Bean Differential Cultivars AB136 and MDRK. Phytopathology, 2017, 107, 1515-1521.	2.2	14
16	Identification of new resistance sources to powdery mildew, and the genetic characterisation of resistance in three common bean genotypes. Crop and Pasture Science, 2017, 68, 1006.	1.5	7
17	Introgressed Genomic Regions in a Set of Nearâ€Isogenic Lines of Common Bean Revealed by Genotypingâ€byâ€Sequencing. Plant Genome, 2017, 10, plantgenome2016.08.0081.	2.8	12
18	Variation in the response to ascochyta blight in common bean germplasm. European Journal of Plant Pathology, 2016, 146, 977-985.	1.7	3

ΑΝΑ CΑΜΡΑ

#	Article	IF	CITATIONS
19	Identification of a New Chromosomal Region Involved in the Genetic Control of Resistance to Anthracnose in Common Bean. Plant Genome, 2015, 8, eplantgenome2014.10.0079.	2.8	40
20	Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Molecular Breeding, 2014, 33, 577-588.	2.1	14
21	Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.). BMC Plant Biology, 2014, 14, 115.	3.6	51

22 Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus) Tj ETQq0 0 0.rgBT /Overlock 10 Tr 3.6

23	Genetic resistance to powdery mildew in common bean. Euphytica, 2012, 186, 875-882.	1.2	23
24	Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus. Theoretical and Applied Genetics, 2012, 124, 777-788.	3.6	32
25	Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL population XanaÂ×ACornell 49242. Molecular Breeding, 2012, 29, 31-41.	2.1	28
26	Genetic Analysis of the Resistance to Eight Anthracnose Races in the Common Bean Differential Cultivar Kaboon. Phytopathology, 2011, 101, 757-764.	2.2	29
27	Genetic relationship between cultivated and wild hazelnuts (<i>Corylus avellana</i> L.) collected in northern Spain. Plant Breeding, 2011, 130, 360-366.	1.9	19
28	Mapping and use of seed protein loci for marker-assisted selection of growth habit and photoperiod response in Nuña bean (Phaseolus vulgaris L). Euphytica, 2011, 179, 383-391.	1.2	6
29	Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2010, 120, 1367-1380.	3.6	112
30	Screening Common Bean for Resistance to Four <i>Sclerotinia sclerotiorum</i> Isolates Collected in Northern Spain. Plant Disease, 2010, 94, 885-890.	1.4	30
31	Genetic Analysis and Molecular Mapping of Quantitative Trait Loci in Common Bean Against <i>Pythium ultimum</i> . Phytopathology, 2010, 100, 1315-1320.	2.2	19
32	Genetic dissection of the resistance to nine anthracnose races in the common bean differential cultivars MDRK and TU. Theoretical and Applied Genetics, 2009, 119, 1-11.	3.6	52
33	Genetic Diversity in a Core Collection Established from the Main Bean Genebank in Spain. Crop Science, 2009, 49, 1377-1386.	1.8	26
34	Molecular markers linked to the fin gene controlling determinate growth habit in common bean. Euphytica, 2008, 162, 241-248.	1.2	10
35	Molecular mapping and intra-cluster recombination between anthracnose race-specific resistance genes in the common bean differential cultivars Mexico 222 and Widusa. Theoretical and Applied Genetics, 2008, 116, 807-814.	3.6	40
36	Reaction of a Bean Germplasm Collection Against Five Races of Colletotrichum lindemuthianum Identified in Northern Spain and Implications for Breeding. Plant Disease, 2008, 92, 705-708.	1.4	29

#	Article	IF	CITATIONS
37	Identification and physical mapping of induced translocation breakpoints involving chromosome 1R in rye. Chromosome Research, 2006, 14, 755-765.	2.2	5