Michael W Salter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/908126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nature Communications, 2022, 13, 843.	12.8	62
2	Cholinergic modulation is independent of T lymphocytes in a mouse model of neuropathic pain. Molecular Pain, 2022, 18, 174480692210766.	2.1	1
3	Microglia-independent peripheral neuropathic pain in male and female mice. Pain, 2022, 163, e1129-e1144.	4.2	15
4	Clial-modulating agents for the treatment of pain: protocol for a systematic review. BMJ Open, 2022, 12, e055713.	1.9	0
5	Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Translational Psychiatry, 2022, 12, .	4.8	12
6	Purinergic signalling in spinal pain processing. Purinergic Signalling, 2021, 17, 49-54.	2.2	21
7	The Tâ€ŧype calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. British Journal of Pharmacology, 2021, 178, 3517-3532.	5.4	27
8	Alternative splicing of GluN1 gates glycine site–dependent nonionotropic signaling by NMDAR receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
9	Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology, 2021, 193, 108615.	4.1	18
10	Synaptic Dysfunction in Human Neurons With Autism-Associated Deletions in PTCHD1-AS. Biological Psychiatry, 2020, 87, 139-149.	1.3	57
11	Intracellular Calcium Responses Encode Action Potential Firing in Spinal Cord Lamina I Neurons. Journal of Neuroscience, 2020, 40, 4439-4456.	3.6	12
12	Tripartite signalling by NMDA receptors. Molecular Brain, 2020, 13, 23.	2.6	34
13	Sex-Dependent Mechanisms of Chronic Pain: A Focus on Microglia and P2X4R. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 202-209.	2.5	36
14	Chloride Dysregulation through Downregulation of KCC2 Mediates Neuropathic Pain in Both Sexes. Cell Reports, 2019, 28, 590-596.e4.	6.4	96
15	The impact of postsynaptic density 95 blocking peptide (Tatâ€NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainateâ€induced epileptogenesis. Journal of Neuroscience Research, 2019, 97, 1378-1392.	2.9	11
16	SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nature Neuroscience, 2019, 22, 556-564.	14.8	109
17	Src deficient mice demonstrate behavioral and electrophysiological alterations relevant to psychiatric and developmental disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 84-92.	4.8	11
18	Priming of Adult Incision Response by Early-Life Injury: Neonatal Microglial Inhibition Has Persistent But Sexually Dimorphic Effects in Adult Rats. Journal of Neuroscience, 2019, 39, 3081-3093.	3.6	62

#	Article	IF	CITATIONS
19	Control of Long-Term Synaptic Potentiation and Learning by Alternative Splicing of the NMDA Receptor Subunit GluN1. Cell Reports, 2019, 29, 4285-4294.e5.	6.4	32
20	Strangers in strange lands: mitochondrial proteins found at extra-mitochondrial locations. Biochemical Journal, 2019, 476, 25-37.	3.7	3
21	Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain, 2018, 159, 1752-1763.	4.2	165
22	Hippocampal protein kinase D1 is necessary for DHPC-induced learning and memory impairments in rats. PLoS ONE, 2018, 13, e0195095.	2.5	3
23	Circulating NOD1 Activators and Hematopoietic NOD1 Contribute to Metabolic Inflammation and Insulin Resistance. Cell Reports, 2017, 18, 2415-2426.	6.4	70
24	Molecules in pain and sex: a developing story. Molecular Brain, 2017, 10, 9.	2.6	81
25	An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors. Nature Communications, 2017, 8, 15220.	12.8	11
26	The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Research Reviews, 2017, 40, 84-94.	10.9	167
27	Microglia emerge as central players in brain disease. Nature Medicine, 2017, 23, 1018-1027.	30.7	1,208
28	Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition. Cell Reports, 2017, 20, 2156-2168.	6.4	41
29	Spatial gene expression analysis of neuroanatomical differences in mouse models. NeuroImage, 2017, 163, 220-230.	4.2	18
30	VIP cortical conductors set the tone for chronic pain. Nature Neuroscience, 2017, 20, 1037-1038.	14.8	2
31	Sex differences in pain. Pain, 2016, 157, S2-S6.	4.2	158
32	Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing. Cell Reports, 2016, 17, 2753-2765.	6.4	110
33	Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nature Communications, 2016, 7, 12529.	12.8	142
34	Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nature Communications, 2016, 7, 13102.	12.8	105
35	Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons. Scientific Reports, 2016, 6, 23837.	3.3	25
36	SnapShot: Microglia in Disease. Cell, 2016, 165, 1294-1294.e1.	28.9	34

#	Article	IF	CITATIONS
37	Regulated internalization of NMDA receptors drives PKD1-mediated suppression of the activity of residual cell-surface NMDA receptors. Molecular Brain, 2015, 8, 75.	2.6	6
38	Human induced pluripotent stem cell derived neurons as a model for Williams-Beuren syndrome. Molecular Brain, 2015, 8, 77.	2.6	33
39	MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiology of Disease, 2015, 76, 37-45.	4.4	84
40	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	14.8	1,041
41	Pain and Poppies: The Good, the Bad, and the Ugly of Opioid Analgesics. Journal of Neuroscience, 2015, 35, 13879-13888.	3.6	175
42	Neto Auxiliary Protein Interactions Regulate Kainate and NMDA Receptor Subunit Localization at Mossy Fiber–CA3 Pyramidal Cell Synapses. Journal of Neuroscience, 2014, 34, 622-628.	3.6	55
43	Deepening understanding of the neural substrates of chronic pain. Brain, 2014, 137, 651-653.	7.6	11
44	Sublime Microglia: Expanding Roles for the Guardians of the CNS. Cell, 2014, 158, 15-24.	28.9	441
45	Calcium-Permeable Ion Channels in Pain Signaling. Physiological Reviews, 2014, 94, 81-140.	28.8	249
46	GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord. Scientific Reports, 2014, 4, 4094.	3.3	55
47	Microglia and intractable chronic pain. Clia, 2013, 61, 55-61.	4.9	94
48	Identification of a single amino acid in CluN1 that is critical for glycine-primed internalization of NMDA receptors. Molecular Brain, 2013, 6, 36.	2.6	14
49	Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Clâ^ homeostasis. Nature Neuroscience, 2013, 16, 183-192.	14.8	385
50	Vertebrate Intersectin1 Is Repurposed to Facilitate Cortical Midline Connectivity and Higher Order Cognition. Journal of Neuroscience, 2013, 33, 4055-4065.	3.6	25
51	Neto2 is a KCC2 interacting protein required for neuronal Cl ^{â^'} regulation in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3561-3566.	7.1	98
52	TRPV1 Gates Tissue Access and Sustains Pathogenicity in Autoimmune Encephalitis. Molecular Medicine, 2013, 19, 149-159.	4.4	24
53	Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. EMBO Journal, 2012, 31, 805-816.	7.8	73
54	Priming of adult pain responses by neonatal pain experience: maintenance by central neuroimmune activity. Brain, 2012, 135, 404-417.	7.6	185

#	Article	IF	CITATIONS
55	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	30.7	335
56	A Brief Educational Intervention About Pain and Aging for Older Members of the Community and Health Care Workers. Journal of Pain, 2012, 13, 849-856.	1.4	6
57	P2X4R+ microglia drive neuropathic pain. Nature Neuroscience, 2012, 15, 1068-1073.	14.8	313
58	Neto2 Interacts with the Scaffolding Protein GRIP and Regulates Synaptic Abundance of Kainate Receptors. PLoS ONE, 2012, 7, e51433.	2.5	35
59	P2X4 purinoceptor signaling in chronic pain. Purinergic Signalling, 2012, 8, 621-628.	2.2	54
60	Dysregulated Src upregulation of NMDA receptor activity: a common link in chronic pain and schizophrenia. FEBS Journal, 2012, 279, 2-11.	4.7	56
61	ATP receptors gate microglia signaling in neuropathic pain. Experimental Neurology, 2012, 234, 354-361.	4.1	123
62	Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain. Neuron Glia Biology, 2011, 7, 99-108.	1.6	170
63	Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis-like disease. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3216-3221.	7.1	97
64	Schizophrenia susceptibility pathway neuregulin 1–ErbB4 suppresses Src upregulation of NMDA receptors. Nature Medicine, 2011, 17, 470-478.	30.7	157
65	Identification of Sodium Channel Isoforms That Mediate Action Potential Firing in Lamina I/II Spinal Cord Neurons. Molecular Pain, 2011, 7, 1744-8069-7-67.	2.1	14
66	Plasticity of synaptic glun receptors is required for the Srcâ€dependent induction of longâ€ŧerm potentiation at CA3 A1 synapses. Hippocampus, 2011, 21, 1053-1061.	1.9	12
67	JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain, 2011, 134, 1127-1139.	7.6	260
68	Spinal Cord Toll-Like Receptor 4 Mediates Inflammatory and Neuropathic Hypersensitivity in Male But Not Female Mice. Journal of Neuroscience, 2011, 31, 15450-15454.	3.6	394
69	Neto1 Is an Auxiliary Subunit of Native Synaptic Kainate Receptors. Journal of Neuroscience, 2011, 31, 10009-10018.	3.6	78
70	Microglia–neuronal signalling in neuropathic pain hypersensitivity 2.0. Current Opinion in Neurobiology, 2010, 20, 474-480.	4.2	82
71	Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. European Journal of Neuroscience, 2010, 32, 278-289.	2.6	76
	A Straightight for Dain 2 Coll 2010 142 EOE EOZ		

72 A Straightjacket for Pain?. Cell, 2010, 143, 505-507.

28.9 1

#	Article	IF	CITATIONS
73	α5 Subunit-containing GABAA receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. Neuropharmacology, 2010, 58, 668-675.	4.1	44
74	Astroglia in Medullary Dorsal Horn (Trigeminal Spinal Subnucleus Caudalis) Are Involved in Trigeminal Neuropathic Pain Mechanisms. Journal of Neuroscience, 2009, 29, 11161-11171.	3.6	180
75	P2X4-Receptor-Mediated Synthesis and Release of Brain-Derived Neurotrophic Factor in Microglia Is Dependent on Calcium and p38-Mitogen-Activated Protein Kinase Activation. Journal of Neuroscience, 2009, 29, 3518-3528.	3.6	420
76	Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nature Medicine, 2008, 14, 1325-1332.	30.7	195
77	Taking two cuts at pain. Nature Medicine, 2008, 14, 243-244.	30.7	4
78	NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurology, The, 2008, 7, 742-755.	10.2	363
79	Effectiveness of PSD95 Inhibitors in Permanent and Transient Focal Ischemia in the Rat. Stroke, 2008, 39, 2544-2553.	2.0	175
80	ErbB4 is a suppressor of long-term potentiation in the adult hippocampus. NeuroReport, 2008, 19, 139-143.	1.2	72
81	PDZ Protein Interactions Underlying NMDA Receptor-Mediated Excitotoxicity and Neuroprotection by PSD-95 Inhibitors. Journal of Neuroscience, 2007, 27, 9901-9915.	3.6	180
82	Spinal microglia and neuropathic pain in young rats. Pain, 2007, 128, 215-224.	4.2	106
83	Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury. Brain, Behavior, and Immunity, 2007, 21, 624-633.	4.1	127
84	Transformation of the Output of Spinal Lamina I Neurons After Nerve Injury and Microglia Stimulation Underlying Neuropathic Pain. Molecular Pain, 2007, 3, 1744-8069-3-27.	2.1	221
85	The Striatal-Enriched Protein Tyrosine Phosphatase Gates Long-Term Potentiation and Fear Memory in the Lateral Amygdala. Biological Psychiatry, 2007, 61, 1049-1061.	1.3	100
86	TRPV1+ Sensory Neurons Control \hat{I}^2 Cell Stress and Islet Inflammation in Autoimmune Diabetes. Cell, 2006, 127, 1123-1135.	28.9	308
87	PSD-95 is a negative regulator of the tyrosine kinase Src in the NMDA receptor complex. EMBO Journal, 2006, 25, 4971-4982.	7.8	56
88	Purinoceptors in microglia and neuropathic pain. Pflugers Archiv European Journal of Physiology, 2006, 452, 645-652.	2.8	72
89	Neuropathic pain: symptoms, models, and mechanisms. Drug Development Research, 2006, 67, 289-301.	2.9	14
90	Regulation of NMDA receptor trafficking by amyloid-β. Nature Neuroscience, 2005, 8, 1051-1058.	14.8	1,417

#	Article	IF	CITATIONS
91	Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor-dependent long-term potentiation. Journal of Physiology, 2005, 565, 579-591.	2.9	22
92	BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 2005, 438, 1017-1021.	27.8	1,690
93	Cellular Signalling Pathways of Spinal Pain Neuroplasticity as Targets for Analgesic Development. Current Topics in Medicinal Chemistry, 2005, 5, 557-567.	2.1	72
94	Neuropathic pain and spinal microglia: a big problem from molecules in â€̃small' glia. Trends in Neurosciences, 2005, 28, 101-107.	8.6	716
95	Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6237-6242.	7.1	124
96	Src in synaptic transmission and plasticity. Oncogene, 2004, 23, 8007-8016.	5.9	146
97	Src kinases: a hub for NMDA receptor regulation. Nature Reviews Neuroscience, 2004, 5, 317-328.	10.2	692
98	NMDA receptors are movin' in. Current Opinion in Neurobiology, 2004, 14, 353-361.	4.2	78
99	Glycine binding primes NMDA receptor internalization. Nature, 2003, 422, 302-307.	27.8	382
100	P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003, 424, 778-783.	27.8	1,397
101	Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology, 2003, 45, 720-728.	4.1	92
102	D1 and NMDA receptors hook up: expanding on an emerging theme. Trends in Neurosciences, 2003, 26, 235-237.	8.6	32
103	Differential Frequency Dependence of P2Y1- and P2Y2- Mediated Ca2+Signaling in Astrocytes. Journal of Neuroscience, 2003, 23, 4437-4444.	3.6	81
104	Differential Properties of Astrocyte Calcium Waves Mediated by P2Y1 and P2Y2 Receptors. Journal of Neuroscience, 2003, 23, 6728-6739.	3.6	109
105	Ligand-Dependent Recruitment of the ErbB4 Signaling Complex into Neuronal Lipid Rafts. Journal of Neuroscience, 2003, 23, 3164-3175.	3.6	123
106	The Neurobiology of Central Sensitization. Journal of Musculoskeletal Pain, 2002, 10, 23-33.	0.3	16
107	Treatment of Ischemic Brain Damage by Perturbing NMDA Receptor- PSD-95 Protein Interactions. Science, 2002, 298, 846-850.	12.6	927
108	DREAM Is a Critical Transcriptional Repressor for Pain Modulation. Cell, 2002, 108, 31-43.	28.9	274

#	Article	IF	CITATIONS
109	Tyrosine Phosphatase STEP Is a Tonic Brake on Induction of Long-Term Potentiation. Neuron, 2002, 34, 127-138.	8.1	196
110	LTP gets culture. Trends in Neurosciences, 2001, 24, 560-561.	8.6	8
111	CAKβ/Pyk2 Kinase Is a Signaling Link for Induction of Long-Term Potentiation in CA1 Hippocampus. Neuron, 2001, 29, 485-496.	8.1	258
112	NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Current Opinion in Neurobiology, 2001, 11, 336-342.	4.2	286
113	Sodium channels develop a tyrosine phosphatase complex. Nature Neuroscience, 2000, 3, 417-419.	14.8	8
114	P2Y ₁ Purinoceptor-Mediated Ca ²⁺ Signaling and Ca ²⁺ Wave Propagation in Dorsal Spinal Cord Astrocytes. Journal of Neuroscience, 2000, 20, 2800-2808.	3.6	193
115	The Lurcher Mutation of an α-Amino-3-hydroxy-5-methyl- 4-isoxazolepropionic Acid Receptor Subunit Enhances Potency of Glutamate and Converts an Antagonist to an Agonist. Journal of Biological Chemistry, 2000, 275, 8475-8479.	3.4	64
116	Regulation of Neuregulin Signaling by PSD-95 Interacting with ErbB4 at CNS Synapses. Neuron, 2000, 26, 443-455.	8.1	356
117	Neuronal Plasticity: Increasing the Gain in Pain. Science, 2000, 288, 1765-1768.	12.6	3,771
118	Src Potentiation of NMDA Receptors in Hippocampal and Spinal Neurons Is Not Mediated by Reducing Zinc Inhibition. Journal of Neuroscience, 1999, 19, RC37-RC37.	3.6	55
119	An ambiguous fast synapse: a new twist in the tale of two transmitters. Nature Neuroscience, 1999, 2, 199-200.	14.8	12
120	Chapter 25 Nucleotide receptor signalling in spinal cord astrocytes: Findings and functional implications. Progress in Brain Research, 1999, 120, 311-322.	1.4	5
121	Chapter 3.2.5 Application of recombinant proteins, peptides and antibodies in exploring the role of Src in regulating synaptic function. Handbook of Behavioral Neuroscience, 1999, 13, 438-454.	0.0	0
122	Gain control of NMDA-receptor currents by intracellular sodium. Nature, 1998, 396, 469-474.	27.8	134
123	Src, N-methyl-d-aspartate (NMDA) receptors, and synaptic plasticity. Biochemical Pharmacology, 1998, 56, 789-798.	4.4	107
124	Src Activation in the Induction of Long-Term Potentiation in CA1 Hippocampal Neurons. Science, 1998, 279, 1363-1368.	12.6	306
125	NMDA Channel Regulation by Channel-Associated Protein Tyrosine Kinase Src. Science, 1997, 275, 674-678.	12.6	595
126	Multiple roles of ATP and adenosine in somatosensory processing: Therapeutic implications. Drug Development Research, 1996, 39, 279-288.	2.9	2

#	Article	IF	CITATIONS
127	A novel P ₂ â€purinoceptor expressed by a subpopulation of astrocytes from the dorsal spinal cord of the rat. British Journal of Pharmacology, 1995, 116, 2909-2918.	5.4	67
128	Regulation of intracellular calcium and preprotachykinin neurotransmitter precursor gene expression by patterned electrical stimulation in rat sympathetic neurons. Neuroscience Letters, 1995, 185, 195-198.	2.1	7
129	Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature, 1994, 369, 233-235.	27.8	659
130	Substance P released endogenously by high-intensity sensory stimulation potentiates purinergic inhibition of nociceptive dorsal horn neurons induced by peripheral vibration. Neuroscience Letters, 1994, 176, 128-132.	2.1	16
131	An inhibitory postsynaptic potential in spinal nociceptive neurones is mediated by adenosine through activation of ATP-sensitive K+ channels. Drug Development Research, 1993, 28, 416-422.	2.9	2
132	Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Progress in Neurobiology, 1993, 41, 125-156.	5.7	153
133	Rundown of NMDA-receptor mediated currents is resistant to lowering intracellular [Ca2+] and is prevented by ATP in rat spinal dorsal horn neurons. Neuroscience Letters, 1993, 157, 183-186.	2.1	13
134	ATP-Sensitive K+ channels mediate an IPSP in dorsal horn neurones elicited by sensory stimulation. Synapse, 1992, 11, 214-220.	1.2	16
135	Kindling-induced epilepsy alters calcium currents in granule cells of rat hippocampal slices. Brain Research, 1990, 531, 88-94.	2.2	76
136	Whole-cell voltage-clamp recordings in granule cells acutely isolated from hippocampal slices of adult or aged rats. Neuroscience Letters, 1989, 96, 70-75.	2.1	42
137	A method for isolating and patch-clamping single mammalian taste receptor cells. Brain Research, 1989, 503, 326-329.	2.2	67
138	Requirement of NMDA receptor/channels for intracellular high-energy phosphates and the extent of intraneuronal calcium buffering in cultured mouse hippocampal neurons. Neuroscience Letters, 1988, 93, 73-78.	2.1	54
139	Temporomandibular pain and dysfunction syndrome: The relationship of clinical and psychological data to outcome. Journal of Behavioral Medicine, 1986, 9, 97-109.	2.1	18
140	Characterization of Key Sexually Dimorphic Regulators in Pain Processing. Canadian Journal of Pain, 0,	1.7	0