Mike Boxem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080015/publications.pdf

Version: 2024-02-01

236925 197818 7,407 49 25 49 citations h-index g-index papers 62 62 62 9600 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437, 1173-1178.	27.8	2,676
2	A Map of the Interactome Network of the Metazoan <i>C. elegans</i> . Science, 2004, 303, 540-543.	12.6	1,587
3	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	12.6	776
4	Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nature Methods, 2009, 6, 47-54.	19.0	260
5	A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis. Cell, 2008, 134, 534-545.	28.9	196
6	A First Version of the Caenorhabditis elegans Promoterome. Genome Research, 2004, 14, 2169-2175.	5.5	155
7	CRISPR/Cas9-Targeted Mutagenesis in <i>Caenorhabditis elegans</i> . Genetics, 2013, 195, 1187-1191.	2.9	153
8	Systematic Interactome Mapping and Genetic Perturbation Analysis of a C. elegans TGF- \hat{l}^2 Signaling Network. Molecular Cell, 2004, 13, 469-482.	9.7	136
9	Increasing specificity in high-throughput yeast two-hybrid experiments. Methods, 2004, 32, 363-370.	3.8	135
10	NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Gα. Nature Cell Biology, 2009, 11, 269-277.	10.3	113
11	OSM-11 Facilitates LIN-12 Notch Signaling during Caenorhabditis elegans Vulval Development. PLoS Biology, 2008, 6, e196.	5.6	105
12	<i>lin-35</i> Rb and <i>cki-1</i> Cip/Kip cooperate in developmental regulation of G1 progression in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 4349-4359.	2.5	99
13	C. elegans Class B Synthetic Multivulva Genes Act in G 1 Regulation. Current Biology, 2002, 12, 906-911.	3.9	94
14	'Edgetic' perturbation of a C. elegans BCL2 ortholog. Nature Methods, 2009, 6, 843-849.	19.0	71
15	aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division. Nature Cell Biology, 2011, 13, 1132-1138.	10.3	66
16	Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nature Communications, 2015, 6, 5906.	12.8	62
17	Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods, 2014, 68, 381-388.	3.8	49
18	New insights into apical-basal polarization in epithelia. Current Opinion in Cell Biology, 2020, 62, 1-8.	5.4	46

#	Article	IF	CITATIONS
19	Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. ELife, 2015, 4, .	6.0	45
20	The EBAX-type Cullin-RING E3 Ligase and Hsp90 Guard the Protein Quality of the SAX-3/Robo Receptor in Developing Neurons. Neuron, 2013, 79, 903-916.	8.1	44
21	A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biology, 2016, 14, 66.	3.8	40
22	Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3880-9.	7.1	39
23	PID-1 is a novel factor that operates during 21U-RNA biogenesis in <i>Caenorhabditis elegans</i> li>. Genes and Development, 2014, 28, 683-688.	5.9	37
24	Caenorhabditis elegans Cyclin D/CDK4 and Cyclin E/CDK2 Induce Distinct Cell Cycle Re-Entry Programs in Differentiated Muscle Cells. PLoS Genetics, 2011, 7, e1002362.	3.5	33
25	Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Nature Communications, 2020, 11, 2440.	12.8	33
26	Characterization of a periplasmic protein involved in iron utilization of Actinobacillus actinomycetemcomitans. Journal of Bacteriology, 1997, 179, 4949-4952.	2.2	32
27	JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity. PLoS Genetics, 2017, 13, e1006632.	3.5	29
28	C-terminal phosphorylation modulates ERM-1 localization and dynamics to control cortical actin organization and support lumen formation during <i>C. elegans</i> development. Development (Cambridge), 2020, 147, .	2.5	27
29	TheC. elegansmethionine aminopeptidase 2 analogmap-2is required for germ cell proliferation. FEBS Letters, 2004, 576, 245-250.	2.8	26
30	Epidermal PAR-6 and PKC-3 are essential for larval development of C. elegans and organize non-centrosomal microtubules. ELife, 2020, 9, .	6.0	26
31	A combined binary interaction and phenotypic map of C.Âelegans cell polarity proteins. Nature Cell Biology, 2016, 18, 337-346.	10.3	25
32	Cyclin-dependent kinases in C. elegans. Cell Division, 2006, 1, 6.	2.4	23
33	The <i>C. elegans</i> Crumbs family contains a CRB3 homolog and is not essential for viability. Biology Open, 2015, 4, 276-284.	1.2	20
34	Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans. PLoS Genetics, 2016, 12, e1006291.	3.5	16
35	Identification of Human Protein Interaction Domains using an ORFeome-based Yeast Two-hybrid Fragment Library. Journal of Proteome Research, 2013, 12, 3181-3192.	3.7	14
36	F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the⟨i⟩Caenorhabditis elegans⟨/i⟩embryo. Molecular Biology of the Cell, 2013, 24, 2201-2215.	2.1	14

#	Article	IF	CITATIONS
37	Genetic and cellular sensitivity of $\langle i \rangle$ Caenorhabditis elegans $\langle i \rangle$ to the chemotherapeutic agent cisplatin. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	13
38	Protein interactome mapping in Caenorhabditis elegans. Current Opinion in Systems Biology, 2019, 13, 1-9.	2.6	13
39	BBLN-1 is essential for intermediate filament organization and apical membrane morphology. Current Biology, 2021, 31, 2334-2346.e9.	3.9	13
40	Mapping the Polarity Interactome. Journal of Molecular Biology, 2018, 430, 3521-3544.	4.2	12
41	Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS ONE, 2020, 15, e0226540.	2.5	10
42	Distinct Requirements for CD1d Intracellular Transport for Development of VÎ ± 14 iNKT Cells. Journal of Immunology, 2009, 183, 1780-1788.	0.8	9
43	Caenorhabditis elegans LET-413 Scribble is essential in the epidermis for growth, viability, and directional outgrowth of epithelial seam cells. PLoS Genetics, 2021, 17, e1009856.	3 . 5	7
44	Functional Dissection of C. elegans bZip-Protein CEBP-1 Reveals Novel Structural Motifs Required for Axon Regeneration and Nuclear Import. Frontiers in Cellular Neuroscience, 2019, 13, 348.	3.7	6
45	A Protein Domain-Based Interactome Network for C.Âelegans Early Embryogenesis. Cell, 2012, 151, 1633.	28.9	4
46	Cell Polarity: Getting the PARty Started. Current Biology, 2019, 29, R637-R639.	3.9	4
47	CeLINC, a fluorescence-based protein–protein interaction assay in <i>Caenorhabditis elegans</i> Genetics, 2021, 219, .	2.9	4
48	ERM-1 Phosphorylation and NRFL-1 Redundantly Control Lumen Formation in the C. elegans Intestine. Frontiers in Cell and Developmental Biology, 2022, 10, 769862.	3.7	4
49	Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. Journal of Biological Chemistry, 2022, 298, 101786.	3.4	2