
Xiandong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9080006/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Adsorption of CTAB on Sapphire- <i>c</i> at High pH: Surface and Zeta Potential Measurements Combined with Sum-Frequency and Second-Harmonic Generation. Langmuir, 2022, 38, 3380-3391.	3.5	4
2	Molecular-level understanding of metal ion retention in clay-rich materials. Nature Reviews Earth & Environment, 2022, 3, 461-476.	29.7	39
3	Interfacial structures and acidity constants of goethite from first-principles Molecular Dynamics simulations. American Mineralogist, 2021, 106, 1736-1743.	1.9	7
4	Sn(II) chloride speciation and equilibrium Sn isotope fractionation under hydrothermal conditions: A first principles study. Geochimica Et Cosmochimica Acta, 2021, 300, 25-43.	3.9	23
5	A molecular dynamics study of Li speciation in hydrothermal fluids and silicate melts. Chemical Geology, 2021, 584, 120528.	3.3	5
6	Surface Acidity and As(V) Complexation of Iron Oxyhydroxides: Insights from First-Principles Molecular Dynamics Simulations. Environmental Science & Technology, 2021, 55, 15921-15928.	10.0	10
7	A combined first principles and classical molecular dynamics study of clay-soil organic matters (SOMs) interactions. Geochimica Et Cosmochimica Acta, 2020, 291, 110-125.	3.9	28
8	Molecular dynamics simulation of CO ₂ -switchable surfactant regulated reversible emulsification/demulsification processes of a dodecane–saline system. Physical Chemistry Chemical Physics, 2020, 22, 23574-23585.	2.8	13
9	Coordination of Zr4+/Hf4+/Nb5+/Ta5+ in silicate melts: insight from first principles molecular dynamics simulations. Chemical Geology, 2020, 555, 119814.	3.3	8
10	A molecular dynamics simulation study of KF and NaF ion pairs in hydrothermal fluids. Fluid Phase Equilibria, 2020, 518, 112625.	2.5	11
11	Distribution and Mobility of Crude Oil–Brine in Clay Mesopores: Insights from Molecular Dynamics Simulations. Langmuir, 2019, 35, 14818-14832.	3.5	19
12	Understanding the Heterogeneous Nucleation of Heavy Metal Phyllosilicates on Clay Edges with First-Principles Molecular Dynamics. Environmental Science & Technology, 2019, 53, 13704-13712.	10.0	25
13	An atomic-scale understanding of the initial stage of nucleation of heavy metal cations on clay edges. Geochimica Et Cosmochimica Acta, 2019, 248, 161-171.	3.9	18
14	Complexation of heavy metal cations on clay edges at elevated temperatures. Chemical Geology, 2018, 479, 36-46.	3.3	16
15	Quantum-chemical modelling of clay mineral surfaces and clay mineral–surface–adsorbate interactions. Developments in Clay Science, 2018, 9, 49-87.	0.5	7
16	Complexation of quinone species on 2:1 dioctahedral phyllosilicate surfaces. Applied Clay Science, 2018, 162, 268-275.	5.2	6
17	Mechanistic Understanding of Uranyl Ion Complexation on Montmorillonite Edges: A Combined First-Principles Molecular Dynamics–Surface Complexation Modeling Approach. Environmental Science & Technology, 2018, 52, 8501-8509.	10.0	46
18	Uranyl Arsenate Complexes in Aqueous Solution: Insights from First-Principles Molecular Dynamics Simulations. Inorganic Chemistry, 2018, 57, 5801-5809.	4.0	9

#	Article	IF	CITATIONS
19	Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni(II). Geochimica Et Cosmochimica Acta, 2017, 203, 54-68.	3.9	63
20	Molecular simulation study on K+–Clâ^' ion pair in geological fluids. Acta Geochimica, 2017, 36, 1-8.	1.7	18
21	Complexation of carboxylate on smectite surfaces. Physical Chemistry Chemical Physics, 2017, 19, 18400-18406.	2.8	15
22	Molecular Dynamics Simulation of Alkylammonium-Intercalated Vermiculites. Clays and Clay Minerals, 2017, 65, 378-386.	1.3	9
23	Introduction to a Special Issue on Molecular Computer Simulations of Clays and Clay-Water Interfaces: Recent Progress, Challenges, and Opportunities. Clays and Clay Minerals, 2016, 64, 335-336.	1.3	13
24	Redox potentials of aryl derivatives from hybrid functional based first principles molecular dynamics. Physical Chemistry Chemical Physics, 2016, 18, 14911-14917.	2.8	4
25	Acidity constants and redox potentials of uranyl ions in hydrothermal solutions. Physical Chemistry Chemical Physics, 2016, 18, 26040-26048.	2.8	13
26	Structures and Acidity Constants of Silver–Sulfide Complexes in Hydrothermal Fluids: A First-Principles Molecular Dynamics Study. Journal of Physical Chemistry A, 2016, 120, 8435-8443.	2.5	6
27	Cadmium(II) Complexes Adsorbed on Clay Edge Surfaces: Insight from First Principles Molecular Dynamics Simulation. Clays and Clay Minerals, 2016, 64, 337-347.	1.3	31
28	Surface Wettability of Basal Surfaces of Clay Minerals: Insights from Molecular Dynamics Simulation. Energy & Fuels, 2016, 30, 149-160.	5.1	101
29	A molecular dynamics study of uranyl-carbonate complexes adsorbed on basal surfaces of clay minerals. Diqiu Huaxue, 2015, 34, 143-155.	0.5	3
30	Atomistic simulation on mixing thermodynamics of calcite-smithsonite solid solutions. American Mineralogist, 2015, 100, 172-180.	1.9	8
31	Temperature dependence of interfacial structures and acidity of clay edge surfaces. Geochimica Et Cosmochimica Acta, 2015, 160, 91-99.	3.9	22
32	Structures and acidity constants of arsenite and thioarsenite species in hydrothermal solutions. Chemical Geology, 2015, 411, 192-199.	3.3	13
33	Interfacial structures and acidity of edge surfaces of ferruginous smectites. Geochimica Et Cosmochimica Acta, 2015, 168, 293-301.	3.9	34
34	Aqueous Transition-Metal Cations as Impurities in a Wide Gap Oxide: The Cu ²⁺ /Cu ⁺ and Ag ²⁺ /Ag ⁺ Redox Couples Revisited. Journal of Physical Chemistry B, 2015, 119, 1152-1163.	2.6	24
35	Hydration and Mobility of Interlayer Ions of (Na _{<i>x</i>} ,) Tj ETQq1 1 0.784314 rgBT /Overlock 10 T C, 2014, 118, 29811-29821.	f 50 107 T 3.1	d (Ca _{< 93}
36	Surface acidity of quartz: understanding the crystallographic control. Physical Chemistry Chemical Physics, 2014, 16, 26909-26916.	2.8	52

#	Article	IF	CITATIONS
37	Frontispiece: Aligning Electronic and Protonic Energy Levels of Protonâ€Coupled Electron Transfer in Water Oxidation on Aqueous TiO ₂ . Angewandte Chemie - International Edition, 2014, 53, .	13.8	0
38	Redox Potentials and Acidity Constants from Density Functional Theory Based Molecular Dynamics. Accounts of Chemical Research, 2014, 47, 3522-3529.	15.6	181
39	Temperature-Dependent Phase Transition and Desorption Free Energy of Sodium Dodecyl Sulfate at the Water/Vapor Interface: Approaches from Molecular Dynamics Simulations. Langmuir, 2014, 30, 10600-10607.	3.5	24
40	Specific Counterion Effects on the Atomistic Structure and Capillary-Waves Fluctuation of the Water/Vapor Interface Covered by Sodium Dodecyl Sulfate. Journal of Physical Chemistry C, 2014, 118, 19205-19213.	3.1	18
41	Surface acidity of 2:1-type dioctahedral clay minerals from first principles molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2014, 140, 410-417.	3.9	72
42	Understanding surface acidity of gibbsite with first principles molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2013, 120, 487-495.	3.9	61
43	Acidity of edge surface sites of montmorillonite and kaolinite. Geochimica Et Cosmochimica Acta, 2013, 117, 180-190.	3.9	180
44	Hydration, acidity and metal complexing of polysulfide species: A first principles molecular dynamics study. Chemical Physics Letters, 2013, 563, 9-14.	2.6	19
45	Solution Structures and Acidity Constants of Molybdic Acid. Journal of Physical Chemistry Letters, 2013, 4, 2926-2930.	4.6	39
46	First-Principles Molecular Dynamics Insight into Fe ²⁺ Complexes Adsorbed on Edge Surfaces of Clay Minerals. Clays and Clay Minerals, 2012, 60, 341-347.	1.3	14
47	Molecular Dynamics Simulation of the Effects of NaCl on Electrostatic Properties of Newton Black Films. Journal of Physical Chemistry C, 2012, 116, 21913-21922.	3.1	18
48	First-principles molecular dynamics study of stepwise hydrolysis reactions of Y3+ cations. Chemical Geology, 2012, 334, 37-43.	3.3	15
49	Silver speciation in chloride-containing hydrothermal solutions from first principles molecular dynamics simulations. Chemical Geology, 2012, 294-295, 103-112.	3.3	33
50	Atomic-scale structures of interfaces between phyllosilicate edges and water. Geochimica Et Cosmochimica Acta, 2012, 81, 56-68.	3.9	63
51	Atomic scale structures of interfaces between kaolinite edges and water. Geochimica Et Cosmochimica Acta, 2012, 92, 233-242.	3.9	51
52	Understanding hydration of Zn2+ in hydrothermal fluids with ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2011, 13, 13305.	2.8	24
53	Speciation of gold in hydrosulphide-rich ore-forming fluids: Insights from first-principles molecular dynamics simulations. Geochimica Et Cosmochimica Acta, 2011, 75, 185-194.	3.9	38
54	Acidities of confined water in interlayer space of clay minerals. Geochimica Et Cosmochimica Acta, 2011, 75, 4978-4986.	3.9	32

#	Article	IF	CITATIONS
55	In Silico Calculation of Acidity Constants of Carbonic Acid Conformers. Journal of Physical Chemistry A, 2010, 114, 12914-12917.	2.5	14
56	Acid dissociation mechanisms of Si(OH)4 and Al(H2O)63+ in aqueous solution. Geochimica Et Cosmochimica Acta, 2010, 74, 510-516.	3.9	38
57	<i>Ab Initio</i> Molecular Dynamics Study of Fe-Containing Smectites. Clays and Clay Minerals, 2010, 58, 89-96.	1.3	12
58	Hydration mechanisms of Cu2+: tetra-, penta- or hexa-coordinated?. Physical Chemistry Chemical Physics, 2010, 12, 10801.	2.8	45
59	Molecular dynamics insight into the cointercalation of hexadecyltrimethyl-ammonium and acetate ions into smectites. American Mineralogist, 2009, 94, 143-150.	1.9	49
60	Mechanism of Base-Promoted Dehydrochlorination of Pentachloroethane: Concerted or Stepwise?. Journal of Physical Chemistry A, 2009, 113, 3542-3544.	2.5	5
61	Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochimica Et Cosmochimica Acta, 2008, 72, 1837-1847.	3.9	75
62	Surface complexes of acetate on edge surfaces of 2:1 type phyllosilicate: Insights from density functional theory calculation. Geochimica Et Cosmochimica Acta, 2008, 72, 5896-5907.	3.9	34
63	Interlayer Structure and Dynamics of Alkylammonium-intercalated Smectites with and without Water: A Molecular Dynamics Study. Clays and Clay Minerals, 2007, 55, 554-564.	1.3	66
64	A molecular simulation study of Cs-Cl and Cs-F ion pairs in hydrothermal fluids. Acta Geochimica, 0, , 1.	1.7	0