Karen A Hudson-Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9079465/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Applied Geochemistry, 2014, 51, 229-245.	3.0	545
2	Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Applied Geochemistry, 1999, 14, 1015-1030.	3.0	272
3	Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophysical Research Letters, 2010, 37, .	4.0	184
4	Sources, distribution and storage of heavy metals in the RıÌo Pilcomayo, Bolivia. Journal of Geochemical Exploration, 2001, 72, 229-250.	3.2	137
5	Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 2010, 25, 841-855.	3.0	134
6	Tackling mine wastes. Science, 2016, 352, 288-290.	12.6	116
7	Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modelling. Geochimica Et Cosmochimica Acta, 2006, 70, 608-621.	3.9	114
8	The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: the RıÌos Agrio–Guadiamar, Aznalcóllar, Spain. Applied Geochemistry, 2003, 18, 221-239.	3.0	112
9	2000 years of sediment-borne heavy metal storage in the Yorkshire Ouse basin, NE England, UK. , 1999, 13, 1087-1102.		85
10	Dissolution of lead- and lead–arsenic-jarosites at pH 2 and 8 and 20 °C: Insights from batch experiments. Chemical Geology, 2006, 229, 344-361.	3.3	72
11	Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. Environmental Pollution, 2019, 247, 98-107.	7.5	61
12	Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada. Applied Geochemistry, 2018, 91, 64-74.	3.0	53
13	Mediaeval Lead Pollution in the River Ouse at York, England. Journal of Archaeological Science, 1999, 26, 809-819.	2.4	48
14	Arsenic speciation in waters and sediment of ephemeral floodplain pools, RÃos Agrio–Guadiamar, Aznalcóllar, Spain. Chemical Geology, 2005, 219, 175-192.	3.3	45
15	The dispersal and storage of sediment-associated metals in an arid river system: The Leichhardt River, Mount Isa, Queensland, Australia. Environmental Pollution, 2008, 152, 193-204.	7.5	43
16	Lead isotopic fingerprinting of heavy metal contamination,Rio Pilcomayo basin, Bolivia. Geochemistry: Exploration, Environment, Analysis, 2002, 2, 225-233.	0.9	40
17	Solid-phase phosphorus speciation in Saharan Bodélé Depression dusts and source sediments. Chemical Geology, 2014, 384, 16-26.	3.3	37
18	Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization. Chemosphere, 2017, 168, 529-538.	8.2	34

#	Article	IF	CITATIONS
19	The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies. Chemosphere, 2016, 153, 146-154.	8.2	31
20	Geochemistry, Mineralogy and Microbiology of Molybdenum in Mining-Affected Environments. Minerals (Basel, Switzerland), 2018, 8, 42.	2.0	29
21	Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy, 2020, 197, 105484.	4.3	29
22	Seasonal variations in arsenic mobility and bacterial diversity: The case study of Huangshui Creek, Shimen Realgar Mine, Hunan Province, China. Science of the Total Environment, 2020, 749, 142353.	8.0	28
23	Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste. Chemosphere, 2015, 138, 211-217.	8.2	27
24	Dissolved Mn(III) in water treatment works: Prevalence and significance. Water Research, 2018, 140, 181-190.	11.3	27
25	Origin and Fate of Vanadium in the Hazeltine Creek Catchment following the 2014 Mount Polley Mine Tailings Spill in British Columbia, Canada. Environmental Science & Technology, 2019, 53, 4088-4098.	10.0	27
26	Major and trace metal mobility during weathering of mine tailings: Implications for floodplain soils. Applied Geochemistry, 2012, 27, 562-576.	3.0	26
27	The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand. Geomorphology, 2017, 295, 159-175.	2.6	26
28	Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environmental Pollution, 2021, 273, 115667.	7.5	26
29	Characterization of Mining-Related Aromatic Contaminants in Active and Abandoned Metal(loid) Tailings Ponds. Environmental Science & Technology, 2020, 54, 15097-15107.	10.0	25
30	Geochemistry of As-, F- and B-bearing waters in and around San Antonio de los Cobres, Argentina, and implications for drinking and irrigation water quality. Journal of Geochemical Exploration, 2012, 112, 276-284.	3.2	22
31	Community exposure and vulnerability to water quality and availability: a case study in the mining-affected Pazña Municipality, Lake Poopó Basin, Bolivian Altiplano. Environmental Management, 2017, 60, 555-573.	2.7	22
32	China's most typical nonferrous organic-metal facilities own specific microbial communities. Scientific Reports, 2018, 8, 12570.	3.3	22
33	Scorodite precipitation in the presence of antimony. Chemical Geology, 2015, 406, 1-9.	3.3	21
34	Influence of pH and temperature on alunite dissolution: Rates, products and insights on mechanisms from atomistic simulation. Chemical Geology, 2015, 419, 1-9.	3.3	20
35	Integration of DSM and SPH to Model Tailings Dam Failure Run-Out Slurry Routing Across 3D Real Terrain. Water (Switzerland), 2018, 10, 1087.	2.7	19
36	Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings. Environmental Pollution, 2019, 255, 113165.	7.5	19

#	Article	IF	CITATIONS
37	Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. American Mineralogist, 2019, 104, 633-640.	1.9	19
38	Coupling effect of Fe 3+ (aq) and biological, nano-sized FeS-coated limestone on the removal of redox-sensitive contaminants (As, Sb and Cr): Implications for in situ passive treatment of acid mine drainage. Applied Geochemistry, 2017, 80, 102-111.	3.0	18
39	Dissolution of realgar by Acidithiobacillus ferrooxidans in the presence and absence of zerovalent iron: Implications for remediation of iron-deficient realgar tailings. Chemosphere, 2018, 209, 381-391.	8.2	17
40	Mining and urban impacts on semi-arid freshwater aquatic systems: the example of Mount Isa, Queensland. Journal of Environmental Monitoring, 2009, 11, 977.	2.1	14
41	Characteristics and mechanisms of Pb(II) sorption onto Fe-rich waste water treatment residue (WTR): A potential sustainable Pb immobilisation technology for soils. Journal of Hazardous Materials, 2021, 402, 123433.	12.4	14
42	Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments. Minerals (Basel, Switzerland), 2021, 11, 22.	2.0	14
43	Arsenic in the environment. Arsenic in the Environment, 2012, , 1-23.	0.0	7
44	A GIS-based method for evaluating sediment storage and transport in large mining-affected river systems. Environmental Earth Sciences, 2015, 74, 4685-4698.	2.7	6
45	Influence of pH and Temperature on Basaluminite Dissolution Rates. ACS Earth and Space Chemistry, 2018, 2, 203-209.	2.7	5
46	Environmental occurrence and health risk assessment of arsenic in Iran: a systematic review and Meta-analysis. Human and Ecological Risk Assessment (HERA), 2022, 28, 683-710.	3.4	5
47	Mining and Planetary Health: A <i>GeoHealth</i> ‣ed Special Collection. GeoHealth, 2018, 2, 278-282.	4.0	4
48	Water and sediment quality of dry season pools in a dryland river system: the upper Leichhardt River, Queensland, Australia. Journal of Environmental Monitoring, 2011, 13, 2050.	2.1	2
49	River sediment geochemistry and provenance following the Mount Polley mine tailings spill, Canada: The role of hydraulic sorting and sediment dilution processes in contaminant dispersal and remediation. Applied Geochemistry, 2021, 134, 105086.	3.0	2
50	Thank You to Our 2018 Peer Reviewers. GeoHealth, 2019, 3, 82-83.	4.0	0
51	Thank You to Our 2019 Peer Reviewers. GeoHealth, 2020, 4, e2020GH000250.	4.0	0
52	Thank You to Our 2020 Peer Reviewers. GeoHealth, 2021, 5, e2021GH000404.	4.0	0
53	Thank You to Our 2021 Peer Reviewers. GeoHealth, 2022, 6, e2022GH000639.	4.0	Ο