Aurore Menegaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9079364/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered Gray Matter Cortical and Subcortical T1-Weighted/T2-Weighted Ratio in Premature-Born Adults. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8, 495-504.	1.5	2
2	Efficient Claustrum Segmentation in T2-weighted Neonatal Brain MRI Using Transfer Learning from Adult Scans. Clinical Neuroradiology, 2022, 32, 665-676.	1.9	4
3	Within amygdala: Basolateral parts are selectively impaired in premature-born adults. NeuroImage: Clinical, 2021, 31, 102780.	2.7	6
4	Decreased amygdala volume in adults after premature birth. Scientific Reports, 2021, 11, 5403.	3.3	16
5	Increased Brain Age Gap Estimate (BrainAGE) in Young Adults After Premature Birth. Frontiers in Aging Neuroscience, 2021, 13, 653365.	3.4	15
6	Visual processing speed is linked to functional connectivity between right frontoparietal and visual networks. European Journal of Neuroscience, 2021, 53, 3362-3377.	2.6	11
7	Aberrant Claustrum Microstructure in Humans after Premature Birth. Cerebral Cortex, 2021, 31, 5549-5559.	2.9	4
8	Aberrant cortico-thalamic structural connectivity in premature-born adults. Cortex, 2021, 141, 347-362.	2.4	10
9	Grey and White Matter Volume Changes after Preterm Birth: A Meta-Analytic Approach. Journal of Personalized Medicine, 2021, 11, 868.	2.5	4
10	Automated claustrum segmentation in human brain MRI using deep learning. Human Brain Mapping, 2021, 42, 5862-5872.	3.6	9
11	An analysis of MRI derived cortical complexity in premature-born adults: Regional patterns, risk factors, and potential significance. NeuroImage, 2020, 208, 116438.	4.2	22
12	Linking the impact of aging on visual short-term memory capacity with changes in the structural connectivity of posterior thalamus to occipital cortices. NeuroImage, 2020, 208, 116440.	4.2	8
13	Reduced apparent fiber density in the white matter of premature-born adults. Scientific Reports, 2020, 10, 17214.	3.3	12
14	Hippocampal subfield volumes are nonspecifically reduced in prematureâ€born adults. Human Brain Mapping, 2020, 41, 5215-5227.	3.6	16
15	Decreased cortical thickness mediates the relationship between premature birth and cognitive performance in adulthood. Human Brain Mapping, 2020, 41, 4952-4963.	3.6	16
16	Impaired structural connectivity between dorsal attention network and pulvinar mediates the impact of premature birth on adult visual–spatial abilities. Human Brain Mapping, 2019, 40, 4058-4071.	3.6	10
17	Aberrant gyrification contributes to the link between gestational age and adult IQ after premature birth. Brain, 2019, 142, 1255-1269.	7.6	31
18	Theory of visual attention thalamic model for visual short-term memory capacity and top-down control: Evidence from a thalamo-cortical structural connectivity analysis. NeuroImage, 2019, 195, 67-77.	4.2	6

#	Article	IF	CITATIONS
19	Decreased cingulo-opercular network functional connectivity mediates the impact of aging on visual processing speed. Neurobiology of Aging, 2019, 73, 50-60.	3.1	40
20	Mesocorticolimbic Connectivity and Volumetric Alterations in <i>DCC</i> Mutation Carriers. Journal of Neuroscience, 2018, 38, 4655-4665.	3.6	23
21	Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults. NeuroImage, 2017, 150, 68-76.	4.2	28
22	Presynaptic D2 Dopamine Receptors Control Long-Term Depression Expression and Memory Processes in the Temporal Hippocampus. Biological Psychiatry, 2015, 77, 513-525.	1.3	84