
## Timothy D H Bugg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9079103/publications.pdf Version: 2024-02-01



TIMOTHY D H RUCC

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pathways for degradation of lignin in bacteria and fungi. Natural Product Reports, 2011, 28, 1883.                                                                                                                       | 10.3 | 781       |
| 2  | The emerging role for bacteria in lignin degradation and bio-product formation. Current Opinion in Biotechnology, 2011, 22, 394-400.                                                                                     | 6.6  | 627       |
| 3  | Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.                                                                                                   | 6.1  | 478       |
| 4  | The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiology Reviews, 2008, 32, 208-233.                                                                                                              | 8.6  | 364       |
| 5  | ldentification of DypB from <i>Rhodococcus jostii</i> RHA1 as a Lignin Peroxidase. Biochemistry, 2011, 50, 5096-5107.                                                                                                    | 2.5  | 342       |
| 6  | Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4268-4273.              | 7.1  | 264       |
| 7  | Antimicrobial nucleoside antibiotics targeting cell wall assembly: Recent advances in<br>structure–function studies and nucleoside biosynthesis. Natural Product Reports, 2010, 27, 279-304.                             | 10.3 | 262       |
| 8  | Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 2010, 187, 343-354.                                                                                                                              | 7.3  | 243       |
| 9  | Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal<br>lignin degraders. Molecular BioSystems, 2010, 6, 815.                                                                | 2.9  | 238       |
| 10 | Bacterial cell wall assembly: still an attractive antibacterial target. Trends in Biotechnology, 2011, 29,<br>167-173.                                                                                                   | 9.3  | 230       |
| 11 | Breaking Down Lignin to High-Value Chemicals: The Conversion of Lignocellulose to Vanillin in a Gene<br>Deletion Mutant of <i>Rhodococcus jostii</i> RHA1. ACS Chemical Biology, 2013, 8, 2151-2156.                     | 3.4  | 228       |
| 12 | Enzymatic conversion of lignin into renewable chemicals. Current Opinion in Chemical Biology, 2015, 29, 10-17.                                                                                                           | 6.1  | 209       |
| 13 | Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Current Opinion in Chemical Biology, 2008, 12, 134-140.                                                         | 6.1  | 200       |
| 14 | Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural<br>Product Reports, 2003, 20, 252-273.                                                                                 | 10.3 | 194       |
| 15 | Characterization of Dye-Decolorizing Peroxidases from <i>Rhodococcus jostii</i> RHA1. Biochemistry, 2011, 50, 5108-5119.                                                                                                 | 2.5  | 144       |
| 16 | Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Natural Product Reports, 1998, 15, 513.                               | 10.3 | 143       |
| 17 | Periodic root branching in <i>Arabidopsis</i> requires synthesis of an uncharacterized carotenoid<br>derivative. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111,<br>E1300-9. | 7.1  | 139       |
| 18 | Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements?. Chemical Communications, 2001, , 941-952.                                                 | 4.1  | 136       |

| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B. Archives of Biochemistry and Biophysics, 2015, 574, 93-98.                                                                  | 3.0  | 125       |
| 20 | Phospho-MurNAc-Pentapeptide Translocase (MraY) as a Target for Antibacterial Agents and Antibacterial Proteins. Infectious Disorders - Drug Targets, 2006, 6, 85-106.                                                                                      | 0.8  | 119       |
| 21 | Assembly <i>inÂvitro</i> of <i>RhodococcusÂjostii</i> Â <scp>RHA</scp> 1 encapsulin and peroxidase DypB<br>to form a nanocompartment. FEBS Journal, 2013, 280, 2097-2104.                                                                                  | 4.7  | 109       |
| 22 | Biocatalytic conversion of lignin to aromatic dicarboxylic acids in Rhodococcus jostii RHA1 by re-routing aromatic degradation pathways. Green Chemistry, 2015, 17, 4974-4979.                                                                             | 9.0  | 107       |
| 23 | Extradiol Oxidative Cleavage of Catechols by Ferrous and Ferric Complexes of<br>1,4,7-Triazacyclononane:A Insight into the Mechanism of the Extradiol Catechol Dioxygenases. Journal<br>of the American Chemical Society, 2001, 123, 5030-5039.            | 13.7 | 103       |
| 24 | Enzymology of the carotenoid cleavage dioxygenases: Reaction mechanisms, inhibition and biochemical roles. Archives of Biochemistry and Biophysics, 2014, 544, 105-111.                                                                                    | 3.0  | 99        |
| 25 | Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds. Archives of Biochemistry and Biophysics, 2016, 594, 54-60.                                                                               | 3.0  | 97        |
| 26 | Identification of Manganese Superoxide Dismutase from <i>Sphingobacterium <i>sp.</i></i> T2 as a<br>Novel Bacterial Enzyme for Lignin Oxidation. ACS Chemical Biology, 2015, 10, 2286-2294.                                                                | 3.4  | 93        |
| 27 | Regulation and Manipulation of the Biosynthesis of Abscisic Acid, Including the Supply of Xanthophyll<br>Precursors. Journal of Plant Growth Regulation, 2005, 24, 253.                                                                                    | 5.1  | 80        |
| 28 | Cisâ^'Trans Isomerization of a Cyclopropyl Radical Trap Catalyzed by Extradiol Catechol Dioxygenases:<br>Evidence for a Semiquinone Intermediate. Journal of the American Chemical Society, 1996, 118, 8336-8343.                                          | 13.7 | 76        |
| 29 | Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Current Opinion in Chemical Biology, 2020, 55, 26-33.                                                                                  | 6.1  | 75        |
| 30 | Phospho- N -Acetyl-Muramyl-Pentapeptide Translocase from Escherichia coli : Catalytic Role of<br>Conserved Aspartic Acid Residues. Journal of Bacteriology, 2004, 186, 1747-1757.                                                                          | 2.2  | 74        |
| 31 | Investigation of the Chemocatalytic and Biocatalytic Valorization of a Range of Different Lignin<br>Preparations: The Importance of β-O-4 Content. ACS Sustainable Chemistry and Engineering, 2016, 4,<br>6921-6930.                                       | 6.7  | 74        |
| 32 | Characterization of tRNA-dependent Peptide Bond Formation by MurM in the Synthesis of<br>Streptococcus pneumoniae Peptidoglycan. Journal of Biological Chemistry, 2008, 283, 6402-6417.                                                                    | 3.4  | 70        |
| 33 | Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnology for Biofuels, 2018, 11, 75.                                                                                         | 6.2  | 65        |
| 34 | Catalytic Mechanism of a Câ^'C Hydrolase Enzyme: Evidence for aGem-Diol Intermediate, Not an Acyl<br>Enzymeâ€. Biochemistry, 2000, 39, 1522-1531.                                                                                                          | 2.5  | 59        |
| 35 | Acidâ^'Base Catalysis in the Extradiol Catechol Dioxygenase Reaction Mechanism:Â Site-Directed<br>Mutagenesis of His-115 and His-179 inEscherichia coli2,3-Dihydroxyphenylpropionate 1,2-Dioxygenase<br>(MhpB)â€,â€j. Biochemistry, 2004, 43, 13390-13396. | 2.5  | 59        |
| 36 | Purification, Characterization, and Stereochemical Analysis of a Câ^'C Hydrolase:Â<br>2-Hydroxy-6-keto-nona-2,4-diene-1,9-dioic Acid 5,6-Hydrolase. Biochemistry, 1997, 36, 12242-12251.                                                                   | 2.5  | 57        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Synthesis and activity of 5′-Uridinyl dipeptide analogues mimicking the amino terminal peptide chain of nucleoside antibiotic mureidomycin A. Bioorganic and Medicinal Chemistry, 2003, 11, 3083-3099.                                                | 3.0  | 55        |
| 38 | Diverse catalytic activities in the αβ-hydrolase family of enzymes: activation of H2O, HCN, H2O2, and O2.<br>Bioorganic Chemistry, 2004, 32, 367-375.                                                                                                 | 4.1  | 55        |
| 39 | Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal<br>transferase by uridine-linked transition state mimics. Bioorganic and Medicinal Chemistry, 2010, 18,<br>2651-2663.                                      | 3.0  | 55        |
| 40 | Structural and functional characterisation of multiâ€copper oxidase CueO from ligninâ€degrading<br>bacterium <i>Ochrobactrum</i> sp. reveal its activity towards lignin model compounds and<br>lignosulfonate. FEBS Journal, 2018, 285, 1684-1700.    | 4.7  | 52        |
| 41 | Lead Structures for New Antibacterials: Stereocontrolled Synthesis of a Bioactive Muraymycin<br>Analogue. Chemistry - A European Journal, 2014, 20, 15292-15297.                                                                                      | 3.3  | 50        |
| 42 | Catalytic Promiscuity in the α/βâ€Hydrolase Superfamily: Hydroxamic Acid Formation, CC Bond<br>Formation, Ester and Thioester Hydrolysis in the CC Hydrolase Family. ChemBioChem, 2008, 9, 71-76.                                                   | 2.6  | 49        |
| 43 | Evidence from Mechanistic Probes for Distinct Hydroperoxide Rearrangement Mechanisms in the<br>Intradiol and Extradiol Catechol Dioxygenases. Journal of the American Chemical Society, 2008, 130,<br>10422-10430.                                    | 13.7 | 46        |
| 44 | Selective Inhibition of Carotenoid Cleavage Dioxygenases. Journal of Biological Chemistry, 2009, 284,<br>5257-5264.                                                                                                                                   | 3.4  | 44        |
| 45 | Pre-Steady-State Kinetic Analysis of 2-Hydroxy-6-keto-nona-2,4-diene-1,9-dioic Acid 5,6-Hydrolase:Â Kinetic<br>Evidence for Enol/Keto Tautomerizationâ€. Biochemistry, 1997, 36, 12252-12258.                                                         | 2.5  | 43        |
| 46 | Purification, characterisation and reaction mechanism of monofunctional 2-hydroxypentadienoic acid hydratase from Escherichia coli. FEBS Journal, 1998, 251, 98-106.                                                                                  | 0.2  | 43        |
| 47 | Sansanmycin natural product analogues as potent and selective anti-mycobacterials that inhibit lipid I biosynthesis. Nature Communications, 2017, 8, 14414.                                                                                           | 12.8 | 43        |
| 48 | Functional genomic analysis of bacterial lignin degraders: diversity in mechanisms of lignin oxidation and metabolism. Applied Microbiology and Biotechnology, 2020, 104, 3305-3320.                                                                  | 3.6  | 41        |
| 49 | Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases:<br>synthesis of carba-analogues for hydroperoxide reaction intermediates. Journal of the Chemical<br>Society, Perkin Transactions 1, 2000, , 3277-3289. | 1.3  | 40        |
| 50 | Native <i>E. coli</i> inner membrane incorporation in solid-supported lipid bilayer membranes.<br>Biointerphases, 2008, 3, FA59-FA67.                                                                                                                 | 1.6  | 39        |
| 51 | Biochemical characterization and selective inhibition of βâ€carotene <i>cis–trans</i> isomerase D27 and<br>carotenoid cleavage dioxygenase <scp>CCD</scp> 8 on the strigolactone biosynthetic pathway. FEBS<br>Journal, 2015, 282, 3986-4000.         | 4.7  | 39        |
| 52 | A biomimetic model reaction for the extradiol catechol dioxygenases. Chemical Communications, 2000, , 1119-1120.                                                                                                                                      | 4.1  | 38        |
| 53 | Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas<br>fluorescens Pf-5: Involvement in bacterial lignin oxidation. Archives of Biochemistry and Biophysics,<br>2018, 660, 97-107.                            | 3.0  | 38        |
| 54 | Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass. Green Chemistry, 2020, 22, 144-152.                                                                                                | 9.0  | 38        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Structure–function studies on nucleoside antibiotic mureidomycin A: synthesis of 5′-functionalised<br>uridine models. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1287-1294.                                                   | 0.9  | 37        |
| 56 | Antibiotic Action and Peptidoglycan Formation on Tethered Lipid Bilayer Membranes. Angewandte<br>Chemie - International Edition, 2006, 45, 2111-2116.                                                                                             | 13.8 | 37        |
| 57 | Stereochemical and mechanistic aspects of dioxygenase-catalysed benzylic hydroxylation of indene and chromane substrates. Organic and Biomolecular Chemistry, 2003, 1, 1298-1307.                                                                 | 2.8  | 35        |
| 58 | Interaction of the transmembrane domain of lysis protein E from bacteriophage ϕX174 with bacterial<br>translocase MraY and peptidyl-prolyl isomerase SlyD. Microbiology (United Kingdom), 2006, 152,<br>2959-2967.                                | 1.8  | 35        |
| 59 | Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases. Bioorganic Chemistry, 2015, 60, 102-109.                                                   | 4.1  | 35        |
| 60 | Catalytic Mechanism of C–C Hydrolase MhpC from Escherichia coli: Kinetic Analysis of His263 and<br>Ser110 Site-directed Mutants. Journal of Molecular Biology, 2005, 346, 241-251.                                                                | 4.2  | 34        |
| 61 | Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from<br>lignin. Microbial Cell Factories, 2021, 20, 15.                                                                                            | 4.0  | 34        |
| 62 | Delignification and enhanced gas release from soil containing lignocellulose by treatment with bacterial lignin degraders. Journal of Applied Microbiology, 2017, 123, 159-171.                                                                   | 3.1  | 33        |
| 63 | Biological Properties of N-Acyl and N-Haloacetyl Neuraminic Acids: Processing by Enzymes of Sialic<br>Acid Metabolism, and Interaction with Influenza Virus. Bioorganic and Medicinal Chemistry, 2002, 10,<br>3175-3185.                          | 3.0  | 32        |
| 64 | Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidoglycan biosynthesis:<br>derivatives of UDPMurNAc-pentapeptide containing d-cysteine at position 4 or 5. Molecular<br>BioSystems, 2006, 2, 484.                | 2.9  | 32        |
| 65 | Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered<br><i>Pseudomonas putida</i> KT2440. Biotechnology Journal, 2020, 15, e1900571.                                                                     | 3.5  | 32        |
| 66 | Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product<br>antibiotics, bacteriophage I•X174 lysis protein E, and cationic antibacterial peptides. Bioorganic and<br>Medicinal Chemistry, 2016, 24, 6340-6347. | 3.0  | 31        |
| 67 | Investigation of a general base mechanism for esterhydrolysis in C–C hydrolase enzymes of the<br>α/β-hydrolase superfamily: a novel mechanism for the serine catalytic triad. Organic and Biomolecular<br>Chemistry, 2007, 5, 507-513.            | 2.8  | 30        |
| 68 | The development of mechanistic enzymology in the 20th century. Natural Product Reports, 2001, 18, 465-493.                                                                                                                                        | 10.3 | 28        |
| 69 | Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates. Enzyme and Microbial Technology, 2019, 123, 21-29.                                                                     | 3.2  | 28        |
| 70 | Role of the enamide linkage of nucleoside antibiotic mureidomycin A: synthesis and reactivity of<br>enamide-containing analogues. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1279-1286.                                       | 0.9  | 27        |
| 71 | Mechanism of action of nucleoside antibacterial natural product antibiotics. Journal of Antibiotics, 2019, 72, 865-876.                                                                                                                           | 2.0  | 27        |
| 72 | Synthetic 6-aryl-2-hydroxy-6-ketohexa-2,4-dienoic acid substrates for C–C hydrolase BphD:<br>investigation of a general base catalytic mechanism. Organic and Biomolecular Chemistry, 2004, 2,<br>2942-2950.                                      | 2.8  | 26        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Directed Evolution of a Non-Heme-Iron-Dependent Extradiol Catechol Dioxygenase: Identification of<br>Mutants with Intradiol Oxidative Cleavage Activity. ChemBioChem, 2006, 7, 1899-1908.                                                          | 2.6 | 26        |
| 74 | Identification of a Novel Inhibition Site in Translocase MraY Based upon the Site of Interaction with<br>Lysis Protein E from Bacteriophage I•X174. ChemBioChem, 2014, 15, 1300-1308.                                                              | 2.6 | 26        |
| 75 | Identification of novel inhibitors of phospho-MurNAc-pentapeptide translocase MraY from library screening: Isoquinoline alkaloid michellamine B and xanthene dye phloxine B. Bioorganic and Medicinal Chemistry, 2014, 22, 4566-4571.              | 3.0 | 26        |
| 76 | <i>Sphingobacterium</i> sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative<br>Demethylation of Polymeric Lignin <i>via</i> Generation of Hydroxyl Radical. ACS Chemical Biology,<br>2018, 13, 2920-2929.                                | 3.4 | 26        |
| 77 | Exploring the Lignin Catabolism Potential of Soil-Derived Lignocellulolytic Microbial Consortia by a<br>Gene-Centric Metagenomic Approach. Microbial Ecology, 2020, 80, 885-896.                                                                   | 2.8 | 26        |
| 78 | Enhanced biocatalytic degradation of lignin using combinations of lignin-degrading enzymes and accessory enzymes. Catalysis Science and Technology, 2021, 11, 3568-3577.                                                                           | 4.1 | 26        |
| 79 | Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor. Biochemical<br>Journal, 2009, 421, 263-272.                                                                                                                       | 3.7 | 25        |
| 80 | Bioconversion of lignin-derived aromatics into the building block pyridine 2,4-dicarboxylic acid by engineering recombinant Pseudomonas putida strains. Bioresource Technology, 2022, 346, 126638.                                                 | 9.6 | 24        |
| 81 | Catalytic Role for Arginine 188 in the Câ^'C Hydrolase Catalytic Mechanism for <i>Escherichia coli</i> MhpC and <i>Burkholderia xenovorans</i> LB400 BphD. Biochemistry, 2006, 45, 12470-12479.                                                    | 2.5 | 23        |
| 82 | Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC Biochemistry, 2008, 9, 33.                                                                                                                                | 4.4 | 23        |
| 83 | Identification of a novel β-replacement reaction in the biosynthesis of 2,3-diaminobutyric acid in peptidylnucleoside mureidomycin A. Organic and Biomolecular Chemistry, 2008, 6, 1912.                                                           | 2.8 | 23        |
| 84 | Mechanism of action of the uridyl peptide antibiotics: an unexpected link to a protein–protein<br>interaction site in translocase MraY. Chemical Communications, 2014, 50, 13023-13025.                                                            | 4.1 | 23        |
| 85 | Selection of peptide inhibitors against the Pseudomonas aeruginosa MurD cell wall enzyme. Peptides, 2006, 27, 1693-1700.                                                                                                                           | 2.4 | 22        |
| 86 | Enhanced acid stability of a reduced nicotinamide adenine dinucleotide (NADH) analogue. Chemical Communications, 2001, , 2098-2099.                                                                                                                | 4.1 | 20        |
| 87 | A Solvolytic Câ^'C Cleavage Reaction of 6-Acetoxycyclohexa-2,4-dienones:Â Mechanistic Implications for<br>the Intradiol Catechol Dioxygenases. Journal of Organic Chemistry, 2001, 66, 2091-2097.                                                  | 3.2 | 18        |
| 88 | Identification of an extracellular bacterial flavoenzyme that can prevent re-polymerisation of lignin fragments. Biochemical and Biophysical Research Communications, 2017, 482, 57-61.                                                            | 2.1 | 17        |
| 89 | Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Applied and Environmental Microbiology, 2022, 88, .                                                                                                            | 3.1 | 17        |
| 90 | The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and <i>Agrobacterium</i><br>Species Is an Alternative Pathway for Degradation of Protocatechuic Acid and Lignin Fragments.<br>Applied and Environmental Microbiology, 2020, 86, . | 3.1 | 16        |

| #   | Article                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Adenosine phosphonate inhibitors of lipid II: Alanyl tRNA ligase MurM from Streptococcus pneumoniae. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4654-4656.                                                                                                                              | 2.2  | 15        |
| 92  | Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. Journal of Biological Chemistry, 2021, 296, 100038.                                                                                                                        | 3.4  | 15        |
| 93  | Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase<br>Enzymes from <i>Rhodococcus jostii</i> RHA1 and <i>Pseudomonas fluorescens</i> Pf-5 Involved in<br>Degradation of Aryl C <sub>2</sub> Lignin Degradation Fragments. Biochemistry, 2019, 58, 5281-5293. | 2.5  | 14        |
| 94  | Substrate Selectivity and Biochemical Properties of 4-Hydroxy-2-Keto-Pentanoic Acid Aldolase from <i>Escherichia coli</i> . Applied and Environmental Microbiology, 1998, 64, 4093-4094.                                                                                                           | 3.1  | 13        |
| 95  | Covalent modification in aqueous solution of poly-?-D-glutamic acid fromBacillus licheniformis.<br>Journal of Polymer Science Part A, 1998, 36, 1995-1999.                                                                                                                                         | 2.3  | 11        |
| 96  | Promotion of Germination Using Hydroxamic Acid Inhibitors of 9-cis-Epoxycarotenoid Dioxygenase.<br>Frontiers in Plant Science, 2017, 8, 357.                                                                                                                                                       | 3.6  | 11        |
| 97  | Investigation of acid–base catalysis in the extradiol and intradiol catechol dioxygenase reactions<br>using a broad specificity mutant enzyme and model chemistry. Organic and Biomolecular Chemistry,<br>2009, 7, 1368.                                                                           | 2.8  | 10        |
| 98  | Biomimetic Formation of 2â€Tropolones by Dioxygenaseâ€Catalysed Ring Expansion of Substituted 2,4â€Cyclohexadienones. ChemBioChem, 2010, 11, 272-276.                                                                                                                                              | 2.6  | 9         |
| 99  | Lightâ€Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieskeâ€Type<br>Oxygenase from Human Microbiota. Angewandte Chemie - International Edition, 2021, 60, 4529-4534.                                                                                              | 13.8 | 9         |
| 100 | Esterase EstK from <i>Pseudomonas putida</i> mtâ€2: An enantioselective acetylesterase with activity<br>for deacetylation of xylan and poly(vinylacetate). Biotechnology and Applied Biochemistry, 2017, 64,<br>803-809.                                                                           | 3.1  | 8         |
| 101 | Genome Sequence of Lysinibacillus sphaericus, a Lignin-Degrading Bacterium Isolated from Municipal<br>Solid Waste Soil. Genome Announcements, 2018, 6, .                                                                                                                                           | 0.8  | 8         |
| 102 | Biochemical characterization of <i>Serpula lacrymans</i> iron-reductase enzymes in lignocellulose breakdown. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 145-154.                                                                                                              | 3.0  | 8         |
| 103 | O <sub>2</sub> â€independent demethylation of trimethylamine <i>N</i> â€oxide by Tdm of <i>Methylocella<br/>silvestris</i> . FEBS Journal, 2016, 283, 3979-3993.                                                                                                                                   | 4.7  | 7         |
| 104 | Bacterial Enzymes for Lignin Oxidation and Conversion to Renewable Chemicals. Biofuels and Biorefineries, 2016, , 131-146.                                                                                                                                                                         | 0.5  | 7         |
| 105 | Thioester analogues of peptidoglycan fragment MurNAc-L-Ala-γ-D-Glu as substrates for peptidoglycan<br>hydrolase MurNAc-L-Ala amidase. Journal of the Chemical Society, Perkin Transactions 1, 2002, ,<br>1714-1722.                                                                                | 1.3  | 6         |
| 106 | Simplified Novel Muraymycin Analogues; using a Serine Template Strategy for Linking Key<br>Pharmacophores. ChemMedChem, 2020, 15, 1429-1438.                                                                                                                                                       | 3.2  | 6         |
| 107 | Phytotoxic effects of selected N-benzyl-benzoylhydroxamic acid metallo-oxygenase inhibitors: investigation into mechanism of action. New Journal of Chemistry, 2013, 37, 3461.                                                                                                                     | 2.8  | 4         |
| 108 | 2-Hydroxy-6-keto-nona-2,4-diene 1,9-Dioic Acid 5,6-Hydrolase: Evidence from 18O Isotope Exchange for<br>gem-Diol Intermediate. Methods in Enzymology, 2002, 354, 106-118.                                                                                                                          | 1.0  | 3         |

Тімотну D Н Висс

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | In vitro biosynthesis of bacterial peptidoglycan using d-Cys-containing precursors: fluorescent detection of transglycosylation and transpeptidation. Chemical Communications, 2009, , 4037.               | 4.1 | 3         |
| 110 | Observation of the time-course for peptidoglycan lipid intermediate II polymerization by<br>Staphylococcus aureus monofunctional transglycosylase. Microbiology (United Kingdom), 2014, 160,<br>1628-1636. | 1.8 | 3         |
| 111 | How to Break the Rules of Dioxygen Activation. Chemistry and Biology, 2014, 21, 168-169.                                                                                                                   | 6.0 | 3         |
| 112 | Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. Topics in Medicinal Chemistry, 2017, , 1-25.                                                                           | 0.8 | 3         |
| 113 | Editorial: Antibacterial targets for the 21st century. Bioorganic Chemistry, 2014, 55, 1.                                                                                                                  | 4.1 | 2         |
| 114 | Editorial overview: Energy: Prospects for fuels and chemicals from a biomass-based biorefinery using post-genomic chemical biology tools. Current Opinion in Chemical Biology, 2015, 29, v-vii.            | 6.1 | 2         |
| 115 | Extracellular alpha/beta-hydrolase from Paenibacillus species shares structural and functional homology to tobacco salicylic acid binding protein 2. Journal of Structural Biology, 2020, 210, 107496.     | 2.8 | 2         |
| 116 | Peptidomimetic analogues of an Arg-Trp-x-x-Trp motif responsible for interaction of translocase MraY with bacteriophage ϕX174 lysis protein E. Bioorganic and Medicinal Chemistry, 2021, 52, 116502.       | 3.0 | 2         |
| 117 | Lightâ€Activated Electron Transfer and Catalytic Mechanism of Carnitine Oxidation by Rieskeâ€Type<br>Oxygenase from Human Microbiota. Angewandte Chemie, 2021, 133, 4579-4584.                             | 2.0 | 1         |
| 118 | Frontispiece: Lead Structures for New Antibacterials: Stereocontrolled Synthesis of a Bioactive<br>Muraymycin Analogue. Chemistry - A European Journal, 2014, 20, .                                        | 3.3 | 0         |