Lewis Lukens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078510/publications.pdf

Version: 2024-02-01

44 papers

4,440 citations

304743

22

h-index

276875 41 g-index

45 all docs 45 docs citations

45 times ranked

5238 citing authors

#	Article	IF	Citations
1	Genetics, not environment, contributed to winter wheat yield gains in Ontario, Canada. Theoretical and Applied Genetics, 2022, , 1.	3.6	O
2	Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias. BMC Genomics, 2021, 22, 285.	2.8	3
3	The effects of crop attributes, selection, and recombination on Canadian bread wheat molecular variation. Plant Genome, 2021, 14, e20099.	2.8	1
4	Introgressed DNA within a <i>Zea mays</i> near-isogenic line displays lower levels of 24nt sRNA expression than the homologous region from the recurrent parent. Genome, 2021, 64, 1091-1098.	2.0	0
5	The Induction of the Isoflavone Biosynthesis Pathway Is Associated with Resistance to Common Bacterial Blight in Phaseolus vulgaris L Metabolites, 2021, 11, 433.	2.9	3
6	Patterns of stability and change in the maize genome: a case study of small RNA transcriptomes in two recombinant inbred lines and their progenitors. Genome, 2021, , 1-12.	2.0	1
7	Evidence for the Accumulation of Nonsynonymous Mutations and Favorable Pleiotropic Alleles During Wheat Breeding. G3: Genes, Genomes, Genetics, 2020, 10, 4001-4011.	1.8	6
8	Genomic regions associated with important seed quality traits in food-grade soybeans. BMC Plant Biology, 2020, 20, 485.	3.6	12
9	Registration of the S2MET Barley Mapping Population for Multiâ€Environment Genomewide Selection. Journal of Plant Registrations, 2019, 13, 270-280.	0.5	11
10	Distinct gene networks modulate floral induction of autonomous maize and photoperiod-dependent teosinte. Journal of Experimental Botany, 2018, 69, 2937-2952.	4.8	39
11	Leaf Spectral Reflectance of Maize Seedlings and Its Relationship to Cold Tolerance. Crop Science, 2018, 58, 2569-2580.	1.8	9
12	Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genomics, 2018, 19, 761.	2.8	29
13	Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening. BMC Plant Biology, 2017, 17, 89.	3.6	32
14	Changes in light quality alter physiological responses of soybean to thiamethoxam. Planta, 2016, 244, 639-650.	3.2	5
15	Does the presence of neighbouring weeds alter the expression of adaptive plasticity to subsequent drought stress in soybean?. Field Crops Research, 2016, 192, 144-153.	5.1	7
16	<i>Brevis plant1</i> , a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67, 1577-1588.	4.8	29
17	Maize (<i>Zea mays</i>) seeds can detect aboveâ€ground weeds; thiamethoxam alters the view. Pest Management Science, 2015, 71, 1335-1345.	3.4	6
18	Detection of Neighboring Weeds Alters Soybean Seedling Roots and Nodulation. Weed Science, 2015, 63, 888-900.	1.5	11

#	Article	IF	CITATIONS
19	The Effect of Linkage on Genetic Variances within Biparental Simulated and <i>Zea mays</i> Populations. Crop Science, 2014, 54, 2481-2491.	1.8	2
20	Delaying Weed Control Lengthens the Anthesis-Silking Interval in Maize. Weed Science, 2014, 62, 326-337.	1.5	11
21	Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6178-6183.	7.1	91
22	Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6139-6146.	7.1	594
23	Evidence for Selection on Gene Expression in Cultivated Rice (Oryza sativa). Molecular Biology and Evolution, 2014, 31, 1514-1525.	8.9	29
24	Protein-Coding cis-Natural Antisense Transcripts Have High and Broad Expression in Arabidopsis Â. Plant Physiology, 2013, 161, 2171-2180.	4.8	18
25	Bioinformatics Techniques for Understanding and Analyzing Tree Gene Expression Data. , 2012, , 17-38.		2
26	The Genetic Architecture of Flowering Time and Related Traits in Two Early Flowering Maize Lines. Crop Science, 2011, 51, 146-156.	1.8	9
27	Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theoretical and Applied Genetics, 2010, 120, 997-1003.	3.6	41
28	Timing, Effect, and Recovery from Intraspecific Competition in Maize. Agronomy Journal, 2010, 102, 1007-1013.	1.8	16
29	Identification of Novel miRNAs and miRNA Dependent Developmental Shifts of Gene Expression in Arabidopsis thaliana. PLoS ONE, 2010, 5, e10157.	2.5	22
30	Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theoretical and Applied Genetics, 2009, 120, 31-43.	3.6	94
31	The plant genome's methylation status and response to stress: implications for plant improvement. Current Opinion in Plant Biology, 2007, 10, 317-322.	7.1	173
32	Patterns of Sequence Loss and Cytosine Methylation within a Population of Newly Resynthesized <i>Brassica napus</i> Allopolyploids. Plant Physiology, 2006, 140, 336-348.	4.8	250
33	Islands of co-expressed neighbouring genes inArabidopsis thalianasuggest higher-order chromosome domains. Plant Journal, 2006, 45, 347-357.	5.7	64
34	The origin of the naked grains of maize. Nature, 2005, 436, 714-719.	27.8	561
35	Segmental Structure of the <i>Brassica napus</i> Genome Based on Comparative Analysis With <i>Arabidopsis thaliana</i> Genetics, 2005, 171, 765-781.	2.9	516
36	Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnology Journal, 2004, 2, 45-57.	8.3	55

LEWIS LUKENS

#	Article	IF	CITATION
37	Comparison of a <i>Brassica oleracea </i> Genetic Map With the Genome of <i>Arabidopsis thaliana </i> Genetics, 2003, 164, 359-372.	2.9	139
38	Characterization and Effects of the Replicated Flowering Time Gene <i>FLC</i> in <i>Brassica rapa</i> Genetics, 2002, 162, 1457-1468.	2.9	240
39	Molecular Evolution of the teosinte branched Gene Among Maize and Related Grasses. Molecular Biology and Evolution, 2001, 18, 627-638.	8.9	90
40	The limits of selection during maize domestication. Nature, 1999, 398, 236-239.	27.8	715
41	Transcriptional Regulators and the Evolution of Plant Form. Plant Cell, 1998, 10, 1075-1082.	6.6	416
42	Transcriptional Regulators and the Evolution of Plant Form. Plant Cell, 1998, 10, 1075.	6.6	30
43	Variation at the b Mating Type Locus of Ustilago maydis. Phytopathology, 1997, 87, 1233-1239.	2.2	25
44	Correlation of Genetic and Physical Maps at the <i>A</i> Mating-Type Locus of <i>Coprinus cinereus</i> . Genetics, 1996, 144, 1471-1477.	2.9	27