
Jean-Sebastien Silvestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9078040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasticity of Human Adipose Lineage Cells Toward Endothelial Cells. Circulation, 2004, 109, 656-663.	1.6	1,309
2	B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 2013, 19, 1273-1280.	30.7	422
3	Myocardial Production of Aldosterone and Corticosterone in the Rat. Journal of Biological Chemistry, 1998, 273, 4883-4891.	3.4	402
4	Activation of Cardiac Aldosterone Production in Rat Myocardial Infarction. Circulation, 1999, 99, 2694-2701.	1.6	362
5	Lactadherin promotes VEGF-dependent neovascularization. Nature Medicine, 2005, 11, 499-506.	30.7	274
6	Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy, 2014, 16, 245-257.	0.7	253
7	Angiotensin AT ₁ Receptor Subtype as a Cardiac Target of Aldosterone. Hypertension, 1999, 33, 981-986.	2.7	227
8	Postischemic Revascularization: From Cellular and Molecular Mechanisms to Clinical Applications. Physiological Reviews, 2013, 93, 1743-1802.	28.8	214
9	Angiogenesis in the Infarcted Myocardium. Antioxidants and Redox Signaling, 2013, 18, 1100-1113.	5.4	213
10	Angiotensin II Angiogenic Effect In Vivo Involves Vascular Endothelial Growth Factor- and Inflammation-Related Pathways. Laboratory Investigation, 2002, 82, 747-756.	3.7	208
11	Antiangiogenic Effect of Interleukin-10 in Ischemia-Induced Angiogenesis in Mice Hindlimb. Circulation Research, 2000, 87, 448-452.	4.5	194
12	Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. Circulation Research, 2018, 123, 100-106.	4.5	181
13	CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis. Journal of the American College of Cardiology, 2008, 52, 1302-1311.	2.8	176
14	Ex Vivo Priming of Endothelial Progenitor Cells With SDF-1 Before Transplantation Could Increase Their Proangiogenic Potential. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 644-650.	2.4	174
15	Proangiogenic Effect of Angiotensin-Converting Enzyme Inhibition Is Mediated by the Bradykinin B ₂ Receptor Pathway. Circulation Research, 2001, 89, 678-683.	4.5	172
16	Impairment in Ischemia-Induced Neovascularization in Diabetes. American Journal of Pathology, 2004, 164, 457-466.	3.8	172
17	Vascular Endothelial Growth Factor-B Promotes In Vivo Angiogenesis. Circulation Research, 2003, 93, 114-123.	4.5	164
18	Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. Journal of Heart and Lung Transplantation, 2016, 35, 795-807.	0.6	161

#	Article	IF	CITATIONS
19	Rho-Associated Protein Kinase Contributes to Early Atherosclerotic Lesion Formation in Mice. Circulation Research, 2003, 93, 884-888.	4.5	155
20	NADPH Oxidase-Derived Overproduction of Reactive Oxygen Species Impairs Postischemic Neovascularization in Mice with Type 1 Diabetes. American Journal of Pathology, 2006, 169, 719-728.	3.8	154
21	Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8555-8560.	7.1	144
22	Transplantation of Bone Marrow–Derived Mononuclear Cells in Ischemic Apolipoprotein E–Knockout Mice Accelerates Atherosclerosis Without Altering Plaque Composition. Circulation, 2003, 108, 2839-2842.	1.6	142
23	Biological Determinants of Aldosterone-Induced Cardiac Fibrosis in Rats. Hypertension, 1995, 26, 971-978.	2.7	141
24	Acellular therapeutic approach for heart failure: inÂvitro production of extracellular vesicles from human cardiovascular progenitors. European Heart Journal, 2018, 39, 1835-1847.	2.2	137
25	Post-ischaemic neovascularization and inflammation. Cardiovascular Research, 2008, 78, 242-249.	3.8	124
26	Diabetes Mellitus and Ischemic Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1126-1135.	2.4	122
27	Dynamics of Cardiac Neutrophil Diversity in Murine Myocardial Infarction. Circulation Research, 2020, 127, e232-e249.	4.5	122
28	Microparticles From Ischemic Muscle Promotes Postnatal Vasculogenesis. Circulation, 2009, 119, 2808-2817.	1.6	118
29	Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor. Circulation, 2016, 133, 826-839.	1.6	113
30	PSGL-1–mediated activation of EphB4 increases the proangiogenic potential of endothelial progenitor cells. Journal of Clinical Investigation, 2007, 117, 1527-1537.	8.2	113
31	Cardiac aldosterone production and ventricular remodeling. Kidney International, 2000, 57, 1346-1351.	5.2	104
32	Dual Effect of Angiotensin-Converting Enzyme Inhibition on Angiogenesis in Type 1 Diabetic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 65-70.	2.4	104
33	Antiangiogenic Effect of Angiotensin II Type 2 Receptor in Ischemia-Induced Angiogenesis in Mice Hindlimb. Circulation Research, 2002, 90, 1072-1079.	4.5	103
34	TREM-1 Mediates Inflammatory Injury and Cardiac Remodeling Following Myocardial Infarction. Circulation Research, 2015, 116, 1772-1782.	4.5	102
35	Bone Morphogenetic Proteins 2 and 4 Are Selectively Expressed by Late Outgrowth Endothelial Progenitor Cells and Promote Neoangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2137-2143.	2.4	101
36	On-site education of VEGF-recruited monocytes improves their performance as angiogenic and arteriogenic accessory cells. Journal of Experimental Medicine, 2013, 210, 2611-2625.	8.5	98

JEAN-SEBASTIEN SILVESTRE

#	Article	IF	CITATIONS
37	Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. Journal of Experimental Medicine, 2016, 213, 1353-1374.	8.5	97
38	Regulation of Matrix Metalloproteinase Activity in Ischemic Tissue by Interleukin-10. Circulation Research, 2001, 89, 259-264.	4.5	96
39	Evidence of a Role for Lactadherin in Alzheimer's Disease. American Journal of Pathology, 2007, 170, 921-929.	3.8	94
40	Endothelial Nitric Oxide Synthase Lies Downstream From Angiotensin II–Induced Angiogenesis in Ischemic Hindlimb. Hypertension, 2002, 39, 830-835.	2.7	86
41	Coadministration of Endothelial and Smooth Muscle Progenitor Cells Enhances the Efficiency of Proangiogenic Cell-Based Therapy. Circulation Research, 2008, 103, 751-760.	4.5	86
42	Cardiac Senescence Is Associated with Enhanced Expression of Angiotensin II Receptor Subtypes1. Endocrinology, 1998, 139, 2579-2587.	2.8	84
43	Increase in Vascular Permeability and Vasodilation Are Critical for Proangiogenic Effects of Stem Cell Therapy. Circulation, 2006, 114, 328-338.	1.6	84
44	Regulatory T Cells Modulate Postischemic Neovascularization. Circulation, 2009, 120, 1415-1425.	1.6	82
45	Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis and Haemostasis, 2015, 113, 1084-1094.	3.4	79
46	Aldosterone Enhances Ischemia-Induced Neovascularization Through Angiotensin II–Dependent Pathway. Circulation, 2004, 109, 1933-1937.	1.6	78
47	The Chemokine Decoy Receptor D6 Prevents Excessive Inflammation and Adverse Ventricular Remodeling After Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2206-2213.	2.4	78
48	Inhibition of Prolyl Hydroxylase Domain Proteins Promotes Therapeutic Revascularization. Circulation, 2009, 120, 50-59.	1.6	73
49	Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nature Communications, 2021, 12, 1483.	12.8	73
50	Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation. Diabetes, 2010, 59, 694-701.	0.6	65
51	Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice. PLoS ONE, 2008, 3, e3950.	2.5	64
52	Interleukin-18/Interleukin-18 Binding Protein Signaling Modulates Ischemia-Induced Neovascularization in Mice Hindlimb. Circulation Research, 2002, 91, 441-448.	4.5	63
53	Distinct patterns of circulating endothelial cells in pulmonary hypertension. European Respiratory Journal, 2010, 36, 1284-1293.	6.7	63
54	Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovascular Research, 2010, 88, 186-195.	3.8	63

#	Article	lF	CITATIONS
55	Preconditioning by Mitochondrial Reactive Oxygen Species Improves the Proangiogenic Potential of Adipose-Derived Cells-Based Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1093-1099.	2.4	62
56	Akt/Protein Kinase B and Endothelial Nitric Oxide Synthase Mediate Muscular Neovascularization Induced by Tissue Kallikrein Gene Transfer. Circulation, 2004, 110, 1638-1644.	1.6	57
57	Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts. Cardiovascular Research, 2021, 117, 292-307.	3.8	57
58	Aldosterone and the heart: towards a physiological function?. Cardiovascular Research, 1999, 43, 7-12.	3.8	56
59	Hypertension Impairs Postnatal Vasculogenesis. Hypertension, 2008, 51, 1537-1544.	2.7	55
60	Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions. Circulation, 2012, 126, 1882-1895.	1.6	55
61	Small Interfering RNAs Induce Target-Independent Inhibition of Tumor Growth and Vasculature Remodeling in a Mouse Model of Hepatocellular Carcinoma. American Journal of Pathology, 2010, 177, 3192-3201.	3.8	54
62	Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell coâ€administration. European Journal of Neuroscience, 2012, 35, 1208-1217.	2.6	53
63	Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation, 2019, 139, 1530-1547.	1.6	48
64	Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts. Frontiers in Cardiovascular Medicine, 2016, 3, 40.	2.4	46
65	Chronic Blockade of Endothelin Receptors Improves Ischemia-Induced Angiogenesis in Rat Hindlimbs Through Activation of Vascular Endothelial Growth Factor–NO Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1598-1603.	2.4	45
66	Vascular fate of adipose tissue-derived adult stromal cells in the ischemic murine brain: A combined imaging-histological study. NeuroImage, 2007, 34, 1-11.	4.2	45
67	Increased Ischemia-Induced Angiogenesis in the Staggerer Mouse, a Mutant of the Nuclear Receptor Rorα. Circulation Research, 2001, 89, 1209-1215.	4.5	42
68	Impairment in Postischemic Neovascularization in Mice Lacking the CXC Chemokine Receptor 3. Circulation Research, 2005, 96, 576-582.	4.5	42
69	HIF-Prolyl Hydroxylase 2 Inhibition Enhances the Efficiency of Mesenchymal Stem Cell-Based Therapies for the Treatment of Critical Limb Ischemia. Stem Cells, 2014, 32, 231-243.	3.2	41
70	C/EBP Homologous Protein-10 (CHOP-10) Limits Postnatal Neovascularization Through Control of Endothelial Nitric Oxide Synthase Gene Expression. Circulation, 2012, 125, 1014-1026.	1.6	40
71	Angiogenic potential of BM MSCs derived from patients with critical leg ischemia. Bone Marrow Transplantation, 2012, 47, 997-1000.	2.4	39
72	Very-Low-Dose Combination of the Angiotensin-Converting Enzyme Inhibitor Perindopril and the Diuretic Indapamide Induces an Early and Sustained Increase in Neovascularization in Rat Ischemic Legs. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 1038-1043.	2.5	38

#	Article	IF	CITATIONS
73	Decreased arteriolar density in endothelial nitric oxide synthase knockout mice is due to hypertension, not to the constitutive defect in endothelial nitric oxide synthase enzyme. Journal of Hypertension, 2002, 20, 273-280.	0.5	38
74	TREM-1 orchestrates angiotensin II–induced monocyte trafficking and promotes experimental abdominal aortic aneurysm. Journal of Clinical Investigation, 2021, 131, .	8.2	36
75	Molecular Basis of Angiopathy in Diabetes Mellitus. Circulation Research, 2006, 98, 4-6.	4.5	35
76	Chronic Hypoxia–Induced Angiogenesis Normalizes Blood Pressure in Spontaneously Hypertensive Rats. Circulation Research, 2008, 103, 761-769.	4.5	35
77	Combination of the Angiotensin-Converting Enzyme Inhibitor Perindopril and the Diuretic Indapamide Activate Postnatal Vasculogenesis in Spontaneously Hypertensive Rats. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 766-773.	2.5	33
78	Sympathetic Nervous System Regulates Bone Marrow–Derived Cell Egress Through Endothelial Nitric Oxide Synthase Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 643-653.	2.4	33
79	Endothelial Cell Indoleamine 2, 3-Dioxygenase 1 Alters Cardiac Function After Myocardial Infarction Through Kynurenine. Circulation, 2021, 143, 566-580.	1.6	33
80	Cardiomyocytes and Macrophages Discourse on the Method to Govern Cardiac Repair. Frontiers in Cardiovascular Medicine, 2018, 5, 134.	2.4	32
81	Vascular progenitor cells and diabetes: role in postischemic neovascularisation. Diabetes and Metabolism, 2008, 34, 33-36.	2.9	31
82	Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovascular Research, 2012, 95, 205-214.	3.8	31
83	Expression and Modulation of Steroidogenic Acute Regulatory Protein Messenger Ribonucleic Acid in Rat Cardiocytes and after Myocardial Infarction. Endocrinology, 2003, 144, 1861-1868.	2.8	30
84	MicroRNA-21 Coordinates Human Multipotent Cardiovascular Progenitors Therapeutic Potential. Stem Cells, 2014, 32, 2908-2922.	3.2	30
85	α2β1 integrin controls association of Rac with the membrane and triggers quiescence of endothelial cells. Journal of Cell Science, 2010, 123, 2491-2501.	2.0	29
86	Human very Small Embryonic-like Cells Support Vascular Maturation and Therapeutic Revascularization Induced by Endothelial Progenitor Cells. Stem Cell Reviews and Reports, 2017, 13, 552-560.	5.6	29
87	Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages. Nature Communications, 2020, 11, 4311.	12.8	29
88	Tetrapeptide AcSDKP Induces Postischemic Neovascularization Through Monocyte Chemoattractant Protein-1 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 773-779.	2.4	28
89	Ultrasonic Assessment of Hepatic Blood Flow as a Marker of Mouse Hepatocarcinoma. Ultrasound in Medicine and Biology, 2007, 33, 561-570.	1.5	28
90	Bone marrow-derived mesenchymal stem cell-loaded fibrin patches act as a reservoir of paracrine factors in chronic myocardial infarction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3417-3427.	2.7	28

#	Article	IF	CITATIONS
91	Anti-integrin αv therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1+ stromal cells. Scientific Reports, 2020, 10, 11404.	3.3	28
92	Innate Lymphoid Cells Promote Recovery of Ventricular Function After MyocardialÂInfarction. Journal of the American College of Cardiology, 2021, 78, 1127-1142.	2.8	27
93	Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy. American Journal of Pathology, 2011, 178, 55-60.	3.8	26
94	Ephrin-B2-Activated Peripheral Blood Mononuclear Cells From Diabetic Patients Restore Diabetes-Induced Impairment of Postischemic Neovascularization. Diabetes, 2012, 61, 2621-2632.	0.6	26
95	Altered TP receptor function in isolated, perfused kidneys of nondiabetic and diabetic ApoE-deficient mice. American Journal of Physiology - Renal Physiology, 2008, 294, F120-F129.	2.7	24
96	The Evolution of the Stem Cell Theory for Heart Failure. EBioMedicine, 2015, 2, 1871-1879.	6.1	24
97	Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism. Angiogenesis, 2015, 18, 347-359.	7.2	24
98	Pro-angiogenic cell-based therapy for the treatment of ischemic cardiovascular diseases. Thrombosis Research, 2012, 130, S90-S94.	1.7	23
99	Splenic Marginal Zone B Lymphocytes Regulate Cardiac Remodeling After Acute Myocardial Infarction in Mice. Journal of the American College of Cardiology, 2022, 79, 632-647.	2.8	22
100	Adiponectinemia Controls Pro-Angiogenic Cell Therapy. Stem Cells, 2009, 27, 2712-2721.	3.2	21
101	Different Regulation of Cardiac and Renal Corticosteroid Receptors in Aldosterone-salt Treated Rats: Effect of Hypertension and Glucocorticoids. Journal of Molecular and Cellular Cardiology, 2000, 32, 1249-1263.	1.9	20
102	Thromboxane A2/Prostaglandin H2 Receptor Activation Mediates Angiotensin II–Induced Postischemic Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 488-493.	2.4	20
103	Very Small Embryonic-like Stem Cells Are Mobilized in Human Peripheral Blood during Hypoxemic COPD Exacerbations and Pulmonary Hypertension. Stem Cell Reviews and Reports, 2017, 13, 561-566.	5.6	20
104	Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovascular Research, 2008, 78, 201-202.	3.8	18
105	Strategies to Enhance the Efficiency of Endothelial Progenitor Cell Therapy by Ephrin B2 Pretreatment and Coadministration with Smooth Muscle Progenitor Cells on Vascular Function during the Wound-Healing Process in Irradiated or Nonirradiated Condition. Cell Transplantation, 2015, 24, 1343-1361.	2.5	18
106	Evaluation of cardiac dysfunction in adult zebrafish using high frequency echocardiography. Life Sciences, 2020, 253, 117732.	4.3	17
107	Biomarkers of vascular dysfunction and cognitive decline in patients with Alzheimer's disease: no evidence for association in elderly subjects. Aging Clinical and Experimental Research, 2016, 28, 1133-1141.	2.9	11
108	Obesity in Midlife Hampers Resting and Sensoryâ€Evoked Cerebral Blood Flow in Mice. Obesity, 2021, 29, 150-158.	3.0	10

JEAN-SEBASTIEN SILVESTRE

#	Article	IF	CITATIONS
109	Extracellular vesicles fail to trigger the generation of new cardiomyocytes in chronically infarcted hearts. Theranostics, 2021, 11, 10114-10124.	10.0	10
110	Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Frontiers in Endocrinology, 0, 13, .	3.5	10
111	Is aberrant CD8+ T cell activation by hypertension associated with cardiac injury in severe cases of COVID-19?. Cellular and Molecular Immunology, 2020, 17, 675-676.	10.5	9
112	Vascular Endothelial Growth Factor and Angiogenesis. Circulation, 2013, 127, 1644-1646.	1.6	6
113	Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer's disease. Angiogenesis, 2018, 21, 557-569.	7.2	5
114	The cardiac endocrine aldosterone system. Current Opinion in Endocrinology, Diabetes and Obesity, 1999, 6, 204.	0.6	5
115	Circulating progenitor cells and cardiovascular outcomes: latest evidence on angiotensin-converting enzyme inhibitors. European Heart Journal Supplements, 2009, 11, E17-E21.	0.1	4
116	Characterization of nerve and microvessel damage and recovery in type 1 diabetic mice after permanent femoral artery ligation. Journal of Neuroscience Research, 2015, 93, 1451-1461.	2.9	4
117	Evaluation of Rat Heart Microvasculature with High-Spatial-Resolution Susceptibility-weighted MR Imaging. Radiology, 2013, 269, 277-282.	7.3	3
118	Cardiovascular Research in France. Circulation Research, 2018, 122, 657-660.	4.5	3
119	CCL21 in Acute Coronary Syndromes. Journal of the American College of Cardiology, 2019, 74, 783-785.	2.8	3
120	Hormones and the neovascularization process: role of angiotensin II. , 2005, , 77-93.		1
121	Arteries or Veins?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1934-1935.	2.4	1
122	Multiparametric optical and MR imaging demonstrate inhibition of tumor angiogenesis natural history by mural cell therapy. Magnetic Resonance in Medicine, 2014, 72, 841-849.	3.0	1
123	Editorial: Inflammation and Reparative Process After Cardiac Injury. Frontiers in Cardiovascular Medicine, 2019, 6, 162.	2.4	1
124	Interaction between the microcirculatory network and the systemic arterial pressure. Artery Research, 2010, 4, 108.	0.6	0
125	When the Vessels Use Their Brain for Therapeutic Revascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 237-238.	2.4	0
126	Adipose tissue-derived therapeutic cells for peripheral artery diseases: the fatty blessing. Expert Opinion on Biological Therapy, 2016, 16, 735-738.	3.1	0

#	Article	IF	CITATIONS
127	MRP-14 Preach the Worse for PlateletsÂandÂMonocytes Union in Peripheral ArteryÂDisease. Journal of the American College of Cardiology, 2018, 71, 66-68.	2.8	Ο
128	Modeling Acute Pericarditis. JACC Basic To Translational Science, 2021, 6, 151-153.	4.1	0
129	Hypoxia, Arterial Blood Pressure, and Microcirculation. , 2014, , 123-136.		Ο
130	Endothelial Progenitor Cells and Cardiovascular Ischemic Diseases: Characterization, Functions, and Potential Clinical Applications. , 2014, , 235-264.		0
131	Evidence for Vasculogenic Potential and Endothelial Differentiation of Bone-Marrow-Derived Very Small Embryonic-like Stem Cells. Blood, 2014, 124, 5120-5120.	1.4	0