Michael A Gore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907689/publications.pdf

Version: 2024-02-01

125 papers 12,698 citations

38 h-index

87888

28297 105 g-index

171 all docs

171 docs citations

times ranked

171

11617 citing authors

#	Article	IF	CITATIONS
1	Mixed linear model approach adapted for genome-wide association studies. Nature Genetics, 2010, 42, 355-360.	21.4	2,022
2	GAPIT: genome association and prediction integrated tool. Bioinformatics, 2012, 28, 2397-2399.	4.1	2,016
3	Status and Prospects of Association Mapping in Plants. Plant Genome, 2008, 1, .	2.8	1,118
4	A First-Generation Haplotype Map of Maize. Science, 2009, 326, 1115-1117.	12.6	747
5	Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44, 803-807.	21.4	577
6	Field-based phenomics for plant genetics research. Field Crops Research, 2012, 133, 101-112.	5.1	521
7	The Genetic Architecture Of Maize Height. Genetics, 2014, 196, 1337-1356.	2.9	329
8	Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 2014, 41, 68.	2.1	316
9	Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning. Phytopathology, 2017, 107, 1426-1432.	2.2	254
10	Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of <i>Gossypium</i> spp G3: Genes, Genomes, Genetics, 2015, 5, 1187-1209.	1.8	226
11	Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 2012, 83, 1-11.	4.2	200
12	<i>CAROTENOID CLEAVAGE DIOXYGENASE4</i> ls a Negative Regulator of β-Carotene Content in <i>Arabidopsis</i> Seeds. Plant Cell, 2014, 25, 4812-4826.	6.6	180
13	A Foundation for Provitamin A Biofortification of Maize: Genome-Wide Association and Genomic Prediction Models of Carotenoid Levels. Genetics, 2014, 198, 1699-1716.	2.9	180
14	From association to prediction: statistical methods for the dissection and selection of complex traits in plants. Current Opinion in Plant Biology, 2015, 24, 110-118.	7.1	166
15	Genome-Wide Association Study and Pathway-Level Analysis of Tocochromanol Levels in Maize Grain. G3: Genes, Genomes, Genetics, 2013, 3, 1287-1299.	1.8	152
16	Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics, 2014, 127, 283-295.	3.6	151
17	Genome-Wide Analysis of Branched-Chain Amino Acid Levels in <i>Arabidopsis</i> Seeds. Plant Cell, 2014, 25, 4827-4843.	6.6	121
18	Re-evaluating the phylogeny of allopolyploid Gossypium L Molecular Phylogenetics and Evolution, 2015, 92, 45-52.	2.7	110

#	Article	IF	CITATIONS
19	Field-Based High-Throughput Plant Phenotyping Reveals the Temporal Patterns of Quantitative Trait Loci Associated with Stress-Responsive Traits in Cotton. G3: Genes, Genomes, Genetics, 2016, 6, 865-879.	1.8	105
20	The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiology, 2016, 172, pp.00592.2016.	4.8	99
21	Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. G3: Genes, Genomes, Genetics, 2019, 9, 1231-1247.	1.8	96
22	Novel Loci Underlie Natural Variation in Vitamin E Levels in Maize Grain. Plant Cell, 2017, 29, 2374-2392.	6.6	93
23	Sustaining the Future of Plant Breeding: The Critical Role of the USDAâ€ARS National Plant Germplasm System. Crop Science, 2018, 58, 451-468.	1.8	91
24	Image set for deep learning: field images of maize annotated with disease symptoms. BMC Research Notes, 2018, 11, 440.	1.4	91
25	Autonomous Detection of Plant Disease Symptoms Directly from Aerial Imagery. The Plant Phenome Journal, 2019, 2, 1-9.	2.0	73
26	Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning. Remote Sensing, 2019, 11, 2209.	4.0	69
27	Millimeter-Level Plant Disease Detection From Aerial Photographs via Deep Learning and Crowdsourced Data. Frontiers in Plant Science, 2019, 10, 1550.	3.6	68
28	Genetic Analysis of Visually Scored Orange Kernel Color in Maize. Crop Science, 2013, 53, 189-200.	1.8	66
29	Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Computers and Electronics in Agriculture, 2015, 118, 225-236.	7.7	66
30	Transcriptome-Wide Association Supplements Genome-Wide Association in <i>Zea mays</i> . G3: Genes, Genomes, Genetics, 2019, 9, 3023-3033.	1.8	64
31	Linkage Map Construction and Quantitative Trait Locus Analysis of Agronomic and Fiber Quality Traits in Cotton. Plant Genome, 2014, 7, plantgenome2013.07.0023.	2.8	62
32	Largeâ€Scale Discovery of Geneâ€Enriched SNPs. Plant Genome, 2009, 2, .	2.8	55
33	A sorghum practical haplotype graph facilitates genomeâ€wide imputation and costâ€effective genomic prediction. Plant Genome, 2020, 13, e20009.	2.8	54
34	NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. Nature Plants, 2017, 3, 17072.	9.3	53
35	Population Structure and Phylogenetic Relationships in a Diverse Panel of Brassica rapa L Frontiers in Plant Science, 2017, 8, 321.	3.6	53
36	Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. Plant Physiology, 2017, 173, 872-886.	4.8	52

#	Article	IF	CITATIONS
37	The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	52
38	Comparative evolutionary genetics of deleterious load in sorghum and maize. Nature Plants, 2021, 7, 17-24.	9.3	52
39	Deleterious Mutation Burden and Its Association with Complex Traits in Sorghum (<i>Sorghum) Tj ETQq1 1 0.784</i>	4314 rgBT 2.9	/Oyerlock 1
40	The patterns of deleterious mutations during the domestication of soybean. Nature Communications, 2021, 12, 97.	12.8	49
41	The Evolutionary History of Wild, Domesticated, and Feral <i>Brassica oleracea</i> (Brassicaceae). Molecular Biology and Evolution, 2021, 38, 4419-4434.	8.9	49
42	Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton. Molecular Breeding, 2014, 33, 709-720.	2.1	48
43	<i>ZEAXANTHIN EPOXIDASE</i> Activity Potentiates Carotenoid Degradation in Maturing Seed. Plant Physiology, 2016, 171, 1837-1851.	4.8	44
44	Multivariate Genome-Wide Association Analyses Reveal the Genetic Basis of Seed Fatty Acid Composition in Oat (<i>Avena sativa</i> L.). G3: Genes, Genomes, Genetics, 2019, 9, 2963-2975.	1.8	44
45	Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project. Frontiers in Genetics, 2020, 11, 592769.	2.3	44
46	Machine learning-enabled phenotyping for GWAS and TWAS of WUE traits in 869 field-grown sorghum accessions. Plant Physiology, 2021, 187, 1481-1500.	4.8	44
47	Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the <i>Gossypium </i> Diversity Reference Set. Journal of Heredity, 2016, 107, 274-286.	2.4	43
48	Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium. BMC Plant Biology, 2014, 14, 312.	3.6	41
49	A community resource for exploring and utilizing genetic diversity in the USDA pea single plant plus collection. Horticulture Research, 2017, 4, 17017.	6.3	41
50	Molecular characterization of the Gossypium Diversity Reference Set of the US National Cotton Germplasm Collection. Theoretical and Applied Genetics, 2015, 128, 313-327.	3.6	39
51	Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 2020, 13, 71.	1.4	38
52	Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. Theoretical and Applied Genetics, 2016, 129, 453-468.	3.6	37
53	Genomeâ€Wide Association and Genomic Prediction Models of Tocochromanols in Fresh Sweet Corn Kernels. Plant Genome, 2019, 12, 180038.	2.8	37
54	Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nature Communications, 2021, 12, 1227.	12.8	37

#	Article	IF	CITATIONS
55	Evaluation of Target Preparation Methods for Singleâ€Feature Polymorphism Detection in Large Complex Plant Genomes. Crop Science, 2007, 47, S-135.	1.8	36
56	Closing the Divide between Human Nutrition and Plant Breeding. Crop Science, 2015, 55, 1437-1448.	1.8	36
57	Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome, 2020, 13, e20008.	2.8	34
58	Population Genomic Analysis Reveals Differential Evolutionary Histories and Patterns of Diversity across Subgenomes and Subpopulations of Brassica napus L Frontiers in Plant Science, 2016, 7, 525.	3.6	33
59	Aerial highâ€throughput phenotyping enables indirect selection for grain yield at the early generation, seedâ€limited stages in breeding programs. Crop Science, 2020, 60, 3096-3114.	1.8	31
60	Eleven biosynthetic genes explain the majority of natural variation in carotenoid levels in maize grain. Plant Cell, 2021, 33, 882-900.	6.6	31
61	A century of guayule: Comprehensive genetic characterization of the US national guayule (Parthenium) Tj ETQq1	1 0,78431 5.2	14 rgBT /Ove
62	Chemical variation for leaf cuticular waxes and their levels revealed in a diverse panel of Brassica napus L Industrial Crops and Products, 2016, 79, 77-83.	5.2	26
63	Maize Genomes to Fields: 2014 and 2015 field season genotype, phenotype, environment, and inbred ear image datasets. BMC Research Notes, 2018, 11, 452.	1.4	25
64	Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum. G3: Genes, Genomes, Genetics, 2020, 10, 769-781.	1.8	25
65	Science–graphic art partnerships to increase research impact. Communications Biology, 2019, 2, 295.	4.4	24
66	Stomatal conductance, xylem water transport, and root traits underpin improved performance under drought and well-watered conditions across a diverse panel of maize inbred lines. Field Crops Research, 2019, 234, 119-128.	5.1	24
67	Structureâ€function analysis of the maize bulliform cell cuticle and its potential role in dehydration and leaf rolling. Plant Direct, 2020, 4, e00282.	1.9	24
68	Inâ€Field Wholeâ€Plant Maize Architecture Characterized by Subcanopy Rovers and Latent Space Phenotyping. The Plant Phenome Journal, 2019, 2, 1-11.	2.0	23
69	Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes. Plant Physiology, 2021, 187, 2544-2562.	4.8	23
70	A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theoretical and Applied Genetics, 2021, 134, 1015-1031.	3.6	23
71	Investigation of the Influence of Leaf Thickness on Canopy Reflectance and Physiological Traits in Upland and Pima Cotton Populations. Frontiers in Plant Science, 2017, 8, 1405.	3.6	22
72	Genomic characterization of the Native Seeds/SEARCH common bean (Phaseolus vulgaris L.) collection and its seed coat patterns. Genetic Resources and Crop Evolution, 2019, 66, 1469-1482.	1.6	22

#	Article	IF	CITATIONS
73	Relative utility of agronomic, phenological, and morphological traits for assessing genotypeâ€byâ€environment interaction in maize inbreds. Crop Science, 2020, 60, 62-81.	1.8	21
74	Registration of the TMâ€1/NM24016 Cotton Recombinant Inbred Mapping Population. Journal of Plant Registrations, 2012, 6, 124-127.	0.5	21
75	Genome-Wide Association Study and Pathway-Level Analysis of Kernel Color in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 1945-1955.	1.8	20
76	Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Molecular Biology, 2022, 109, 505-522.	3.9	20
77	Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theoretical and Applied Genetics, 2021, 134, 4043-4054.	3.6	20
78	Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici. Frontiers in Genetics, 2017, 08, 26.	2.3	19
79	Heritable temporal gene expression patterns correlate with metabolomic seed content in developing hexaploid oat seed. Plant Biotechnology Journal, 2020, 18, 1211-1222.	8.3	19
80	Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12464-12471.	7.1	19
81	A minimally disruptive method for measuring water potential in planta using hydrogel nanoreporters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
82	High-resolution genome-wide association study pinpoints metal transporter and chelator genes involved in the genetic control of element levels in maize grain. G3: Genes, Genomes, Genetics, 2021, 11 , .	1.8	18
83	Genomic diversity and phylogenetic relationships in the genus Parthenium (Asteraceae). Industrial Crops and Products, 2015, 76, 920-929.	5.2	17
84	Genome-Wide Association Study in New York <i>Phytophthora capsici</i> Involved in Mating Type and Mefenoxam Sensitivity. Phytopathology, 2021, 111, 204-216.	2.2	17
85	Translating insights from the seed metabolome into improved prediction for lipid-composition traits in oat (<i>Avena sativa</i> L.). Genetics, 2021, 217, .	2.9	17
86	Breedbase: a digital ecosystem for modern plant breeding. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	17
87	Divergence of defensive cucurbitacins in independent Cucurbita pepo domestication events leads to differences in specialist herbivore preference. Plant, Cell and Environment, 2020, 43, 2812-2825.	5.7	16
88	ImageBreed: Openâ€access plant breeding web–database for imageâ€basedÂphenotyping. The Plant Phenome Journal, 2020, 3, e20004.	2.0	16
89	Combining GWAS and TWAS to identify candidate causal genes for tocochromanol levels in maize grain. Genetics, 2022, 221, .	2.9	15

#	Article	IF	CITATIONS
91	Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture. G3: Genes, Genomes, Genetics, 2018, 8, 1147-1160.	1.8	14
92	Improving Genomic Prediction for Seed Quality Traits in Oat (Avena sativa L.) Using Trait-Specific Relationship Matrices. Frontiers in Genetics, 2021, 12, 643733.	2.3	14
93	Genetic Analysis of the Transition from Wild to Domesticated Cotton (<i>Gossypium hirsutum</i> L.). G3: Genes, Genomes, Genetics, 2020, 10, 731-754.	1.8	14
94	Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3: Genes, Genomes, Genetics, 2020, 10, 1671-1683.	1.8	13
95	Complex Ploidy Level Variation in Guayule Breeding Programs. Crop Science, 2011, 51, 210-216.	1.8	12
96	Chemical variation for fiber cuticular wax levels in upland cotton (Gossypium hirsutum L.) evaluated under contrasting irrigation regimes. Industrial Crops and Products, 2017, 100, 153-162.	5.2	12
97	Genomic characterization of Ugandan smallholder farmerâ€preferred cassava varieties. Crop Science, 2020, 60, 1450-1461.	1.8	12
98	Random forest regression for optimizing variable planting rates for corn and soybean using topographical and soil data. Agronomy Journal, 2020, 112, 5045-5066.	1.8	11
99	Temporal covariance structure of multi-spectral phenotypes and their predictive ability for end-of-season traits in maize. Theoretical and Applied Genetics, 2020, 133, 2853-2868.	3.6	11
100	Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
101	Use of hydraulic traits for modeling genotypeâ€specific acclimation in cotton under drought. New Phytologist, 2020, 228, 898-909.	7.3	10
102	Transcriptomeâ€wide association and prediction for carotenoids and tocochromanols in fresh sweet corn kernels. Plant Genome, 2022, 15, e20197.	2.8	10
103	Genome size variation in guayule and mariola: Fundamental descriptors for polyploid plant taxa. Industrial Crops and Products, 2014, 54, 1-5.	5.2	9
104	Influences of the combination of high temperature and water deficit on the heritabilities and correlations of agronomic and fiber quality traits in upland cotton. Euphytica, 2017, 213, 1.	1.2	9
105	Machine Learning Enables High-Throughput Phenotyping for Analyses of the Genetic Architecture of Bulliform Cell Patterning in Maize. G3: Genes, Genomes, Genetics, 2019, 9, 4235-4243.	1.8	9
106	The Germ Fraction Inhibits Iron Bioavailability of Maize: Identification of an Approach to Enhance Maize Nutritional Quality via Processing and Breeding. Nutrients, 2019, 11, 833.	4.1	9
107	Making waves in Breedbase: An integrated spectral data storage and analysis pipeline for plant breedingÂprograms. The Plant Phenome Journal, 2021, 4, e20012.	2.0	9
108	Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	9

#	Article	IF	Citations
109	Selection for seed size has uneven effects on specialized metabolite abundance in oat (<i>Avena) Tj ETQq1 1 0.78</i>	34314 rgB ⁻ 1.8	T _g Overlock
110	Integrating GWAS and TWAS to elucidate the genetic architecture of maize leaf cuticular conductance. Plant Physiology, 2022, 189, 2144-2158.	4.8	9
111	Genome-wide association study identifies acyl-lipid metabolism candidate genes involved in the genetic control of natural variation for seed fatty acid traits in Brassica napus L Industrial Crops and Products, 2020, 145, 112080.	5.2	8
112	Generalizable approaches for genomic prediction of metabolites in plants. Plant Genome, 2022, 15, e20205.	2.8	8
113	A Lowâ€Cost Automated System for Highâ€Throughput Phenotyping of Single Oat Seeds. The Plant Phenome Journal, 2018, 1, 1-13.	2.0	7
114	Genome-wide association study suggests an independent genetic basis of zinc and cadmium concentrations in fresh sweet corn kernels. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7
115	Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food and Energy Security, 2022, 11 , e360.	4.3	7
116	A maize LIPID TRANSFER PROTEIN may bridge the gap between PHYTOCHROME-mediated light signaling and cuticle biosynthesis. Plant Signaling and Behavior, 2020, 15, 1790824.	2.4	6
117	Lowâ€cost, handheld nearâ€infrared spectroscopy for root dry matter content prediction in cassava. The Plant Phenome Journal, 2022, 5, .	2.0	6
118	Cotton phenotyping with lidar from a track-mounted platform. Proceedings of SPIE, 2016, , .	0.8	4
119	Nucleotide diversity in the two co-resident genomes of allopolyploid cotton. Plant Systematics and Evolution, 2017, 303, 1021-1042.	0.9	4
120	Genotypic evaluation of twenty-eight high- and low-cyanide cassava in low-land tropics, southeast Nigeria. Heliyon, 2019, 5, e01855.	3.2	4
121	High-Quality Reference Genome Sequence for the Oomycete Vegetable Pathogen Phytophthora capsici Strain LT1534. Microbiology Resource Announcements, 2021, 10, e0029521.	0.6	4
122	Undisciplining the university through shared purpose, practice, and place. Humanities and Social Sciences Communications, 2022, 9, .	2.9	3
123	Interactions between breeding system and ploidy affect niche breadth in Solanum. Royal Society Open Science, 2022, 9, 211862.	2.4	2
124	Prospector: A mobile application for portable, highâ€throughput nearâ€infrared spectroscopy phenotyping. The Plant Phenome Journal, 2021, 4, e20024.	2.0	0
125	Sugarcane Mosaic Virus Resistance in the Wisconsin Sweet Corn Diversity Panel. Journal of the American Society for Horticultural Science, 2021, 146, 435-444.	1.0	0