Saleh Tanveer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mathematical study of a system of multi-dimensional non-local evolution equations describing surfactant-laden two-fluid shear flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	2
2	Nonlinear two-point boundary value problems: applications to a cholera epidemic model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190673.	2.1	3
3	Analysis and computations of a non-local thin-film model for two-fluid shear driven flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190367.	2.1	5
4	Centre modes in pipe flow. IMA Journal of Applied Mathematics, 2019, 84, 854-872.	1.6	0
5	Nonlinear exact coherent structures in pipe flow and their instabilities. Journal of Fluid Mechanics, 2019, 868, 341-368.	3.4	4
6	Analysis of 2 + 1 diffusive–dispersive PDE arising in river braiding. European Journal of Applied Mathematics, 2016, 27, 756-780.	2.9	0
7	Travelling wave states in pipe flow. Journal of Fluid Mechanics, 2016, 791, 284-328.	3.4	10
8	Rigorous analytical approximation of tritronquée solution to Painlevé-I and the first singularity. Journal of Differential Equations, 2016, 261, 3843-3863.	2.2	0
9	Hybrid basis scheme for computing electrostatic fields exterior to close-to-touching discs. IMA Journal of Numerical Analysis, 2016, 36, 743-769.	2.9	3
10	Existence, uniqueness, analyticity, and Borel summability for Boussinesq equations. Journal of Differential Equations, 2015, 258, 3391-3434.	2.2	0
11	Philip Geoffrey Saffman. 19 March 1931 — 17 August 2008. Biographical Memoirs of Fellows of the Royal Society, 2014, 60, 375-395.	0.1	1
12	Proof of the Dubrovin conjecture and analysis of the tritronquée solutions of PI. Duke Mathematical Journal, 2014, 163, .	1.5	29
13	Analytical Approximation of the Blasius Similarity Solution with Rigorous Error Bounds. SIAM Journal on Mathematical Analysis, 2014, 46, 3782-3813.	1.9	4
14	The Lifetime of Shape Oscillations of a Bubble in an Unbounded, Inviscid, and Compressible Fluid with Surface Tension. SIAM Journal on Mathematical Analysis, 2013, 45, 2924-2936.	1.9	4
15	Global solutions for a two-phase Hele-Shaw bubble for a near-circular initial shape. Complex Variables and Elliptic Equations, 2012, 57, 23-61.	0.8	11
16	Semiclassical Low Energy Scattering for One-Dimensional Schrödinger Operators with Exponentially Decaying Potentials. Annales Henri Poincare, 2012, 13, 1371-1426.	1.7	7
17	Global Existence for a Translating Near-Circular Hele–Shaw Bubble with Surface Tension. SIAM Journal on Mathematical Analysis, 2011, 43, 457-506.	1.9	12
18	INTEGRAL FORMULATION OF 3D NAVIER–STOKES AND LONGER TIME EXISTENCE OF SMOOTH SOLUTIONS. Communications in Contemporary Mathematics, 2011, 13, 407-462.	1.2	3

SALEH TANVEER

#	Article	IF	CITATIONS
19	lonization of Coulomb Systems in \$\${mathbb{R}^3}\$\$ by Time Periodic Forcings of Arbitrary Size. Communications in Mathematical Physics, 2010, 296, 681-738.	2.2	5
20	A moving boundary model motivated by electric breakdown: II. Initial value problem. Physica D: Nonlinear Phenomena, 2010, 239, 1542-1559.	2.8	11
21	Exact results for ionization of model atomic systems. Journal of Mathematical Physics, 2010, 51, 015211.	1.1	3
22	A moving boundary problem motivated by electric breakdown, I: Spectrum of linear perturbations. Physica D: Nonlinear Phenomena, 2009, 238, 888-901.	2.8	9
23	Short Time Existence and Borel Summability in the Navier–Stokes Equation in â"∢sup>3. Communications in Partial Differential Equations, 2009, 34, 785-817.	2.2	18
24	Semiclassical analysis of low and zero energy scattering for one-dimensional Schrödinger operators with inverse square potentials. Journal of Functional Analysis, 2008, 255, 2321-2362.	1.4	8
25	Complex Singularity Analysis for a Nonlinear PDE. Communications in Partial Differential Equations, 2006, 31, 593-637.	2.2	10
26	On a pair of interacting bubbles in planar Stokes flow. Journal of Fluid Mechanics, 2005, 541, 231.	3.4	10
27	The Effect of Finiteness in the Saffman–Taylor Viscous Fingering Problem. Journal of Statistical Physics, 2004, 114, 1501-1536.	1.2	10
28	Rigorous Results in Steady Finger Selection in Viscous Fingering. Archive for Rational Mechanics and Analysis, 2003, 166, 219-286.	2.4	23
29	Analyticity and nonexistence of classical steady Hele-Shaw fingers. Communications on Pure and Applied Mathematics, 2003, 56, 353-402.	3.1	23
30	Surprises in viscous fingering. Journal of Fluid Mechanics, 2000, 409, 273-308.	3.4	119
31	Existence and uniqueness for a class of nonlinear higher-order partial differential equations in the complex plane. Communications on Pure and Applied Mathematics, 2000, 53, 1092-1117.	3.1	35
32	Dendritic crystal growth for weak undercooling. II. Surface energy effects on nonlinear evolution. Physical Review E, 1999, 59, 673-710.	2.1	6
33	A note on third–order structure functions in turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 455, 1615-1635.	2.1	42
34	Bounds for second order structure functions and energy spectrum in turbulence. Physics of Fluids, 1999, 11, 2251-2256.	4.0	8
35	On the formation of Moore curvature singularities in vortex sheets. Journal of Fluid Mechanics, 1999, 378, 233-267.	3.4	75
36	A Theory of Exact Solutions for Plane Viscous Blobs. Journal of Nonlinear Science, 1998, 8, 261-279.	2.1	22

SALEH TANVEER

#	Article	IF	CITATIONS
37	A Theory of Exact Solutions for Annular Viscous Blobs. Journal of Nonlinear Science, 1998, 8, 375-400.	2.1	27
38	A Hele-Shaw problem and the second Painlev $ ilde{A}$ © transcendent. Mathematical Proceedings of the Cambridge Philosophical Society, 1998, 124, 169-191.	0.4	22
39	Dendritic crystal growth for weak undercooling. Physical Review E, 1997, 56, 3068-3100.	2.1	14
40	Singular effects of surface tension in evolving Hele-Shaw flows. Journal of Fluid Mechanics, 1996, 323, 201-236.	3.4	50
41	Singular Perturbation of Smoothly Evolving Hele-Shaw Solutions. Physical Review Letters, 1996, 76, 419-422.	7.8	35
42	A Well-Posed Numerical Method to Track Isolated Conformal Map Singularities in Hele-Shaw Flow. Journal of Computational Physics, 1995, 120, 348-364.	3.8	18
43	Time-evolving bubbles in two-dimensional Stokes flow. Journal of Fluid Mechanics, 1995, 301, 325-344.	3.4	59
44	The stability of a twoâ€dimensional rising bubble. Physics of Fluids, 1995, 7, 1292-1306.	4.0	7
45	Convection effects on radial segregation and crystal–melt interface in vertical Bridgman growth. Physics of Fluids, 1994, 6, 2270-2293.	4.0	11
46	Bubble Breakup in Two-Dimensional Stokes Flow. Physical Review Letters, 1994, 73, 2845-2848.	7.8	22
47	Singularities of the Euler equation and hydrodynamic stability. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1456-1465.	1.6	8
48	Infinite stream of Hele–Shaw bubbles. Physics of Fluids A, Fluid Dynamics, 1991, 3, 367-379.	1.6	11
49	Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Péclet number. Physical Review A, 1989, 40, 4756-4769.	2.5	24
50	Prediction of bubble velocity in a Hele–Shaw cell: Thin film and contact angle effects. Physics of Fluids A, Fluid Dynamics, 1989, 1, 219-223.	1.6	13
51	Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. Theoretical and Computational Fluid Dynamics, 1989, 1, 135-163.	2.2	9
52	The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow. Physics of Fluids, 1988, 31, 978.	1.4	43
53	The effect of nonzero viscosity ratio on the stability of fingers and bubbles in a Hele–Shaw cell. Physics of Fluids, 1988, 31, 3188.	1.4	8
54	Analytic theory for the linear stability of the Saffman–Taylor finger. Physics of Fluids, 1987, 30, 2318.	1.4	42

SALEH TANVEER

#	Article	IF	CITATIONS
55	Stability of bubbles in a Hele–Shaw cell. Physics of Fluids, 1987, 30, 2624-2635.	1.4	34
56	New solutions for steady bubbles in a Hele–Shaw cell. Physics of Fluids, 1987, 30, 651.	1.4	58
57	Analytic theory for the selection of a symmetric Saffman–Taylor finger in a Hele–Shaw cell. Physics of Fluids, 1987, 30, 1589.	1.4	89
58	The effect of surface tension on the shape of a Hele–Shaw cell bubble. Physics of Fluids, 1986, 29, 3537.	1.4	90
59	A Steadily Translating Pair of Equal and Opposite Vortices with Vortex Sheets on Their Boundaries. Studies in Applied Mathematics, 1986, 74, 139-154.	2.4	9
60	Vortex Induced Lift on a Flat Plate with a Curved Forward-Facing Flap. Studies in Applied Mathematics, 1985, 72, 173-187.	2.4	4
61	Prandtl–Batchelor flow past a flat plate with a forward-facing flap. Journal of Fluid Mechanics, 1984, 143, 351-365.	3.4	30
62	Vortex Induced Lift on Two Dimensional Low Speed Wings. Studies in Applied Mathematics, 1984, 71, 65-78.	2.4	11