
Matias Simons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lysosomal cystine mobilization shapes the response of TORC1 and tissue growth to fasting. Science, 2022, 375, eabc4203.	12.6	35
2	Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nature Reviews Nephrology, 2022, 18, 417-434.	9.6	13
3	Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. ELife, 2022, 11, .	6.0	18
4	Mutations in the Vâ€ATPase Assembly Factor VMA21 Cause a Congenital Disorder of Glycosylation With Autophagic Liver Disease. Hepatology, 2020, 72, 1968-1986.	7.3	32
5	<i>De novo</i> SCAMP5 mutation causes a neurodevelopmental disorder with autistic features and seizures. Journal of Medical Genetics, 2020, 57, 138-144.	3.2	17
6	The (pro)renin receptor: what's in a name?. Nature Reviews Nephrology, 2020, 16, 304-304.	9.6	4
7	Filling the Gap: Drosophila Nephrocytes as Model System in Kidney Research. Journal of the American Society of Nephrology: JASN, 2019, 30, 719-720.	6.1	3
8	Molecular Basis for Autosomal-Dominant Renal Fanconi Syndrome Caused by HNF4A. Cell Reports, 2019, 29, 4407-4421.e5.	6.4	31
9	Vacuolar ATPase is required for ERKâ€dependent wound healing in the <i>Drosophila</i> embryo. Wound Repair and Regeneration, 2018, 26, 102-107.	3.0	6
10	Mutations in ATP6AP2 cause autophagic liver disease in humans. Autophagy, 2018, 14, 1-2.	9.1	7
11	The Benefits of Tubular Proteinuria: An Evolutionary Perspective. Journal of the American Society of Nephrology: JASN, 2018, 29, 710-712.	6.1	12
12	A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genetics, 2018, 14, e1007386.	3.5	17
13	ATP6AP2 functions as a V-ATPase assembly factor in the endoplasmic reticulum. Molecular Biology of the Cell, 2018, 29, 2156-2164.	2.1	24
14	Targeting mTOR Signaling Can Prevent the Progression of FSGS. Journal of the American Society of Nephrology: JASN, 2017, 28, 2144-2157.	6.1	57
15	Using Drosophila nephrocytes in genetic kidney disease. Cell and Tissue Research, 2017, 369, 119-126.	2.9	26
16	APOL1–Mediated Cell Injury Involves Disruption of Conserved Trafficking Processes. Journal of the American Society of Nephrology: JASN, 2017, 28, 1117-1130.	6.1	88
17	Mutations in the X-linked <i>ATP6AP2</i> cause a glycosylation disorder with autophagic defects. Journal of Experimental Medicine, 2017, 214, 3707-3729.	8.5	62
18	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	8.2	160

MATIAS SIMONS

#	Article	IF	CITATIONS
19	Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome. American Journal of Human Genetics, 2016, 98, 971-980.	6.2	113
20	Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System. Journal of the American Society of Nephrology: JASN, 2016, 27, 3320-3330.	6.1	91
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Flies With Skin Blisters. Journal of Investigative Dermatology, 2015, 135, 1944-1945.	0.7	4
23	Spontaneous and electric field–controlled front–rear polarization of human keratinocytes. Molecular Biology of the Cell, 2015, 26, 4373-4386.	2.1	25
24	V-ATPase/mTOR Signaling Regulates Megalin-Mediated Apical Endocytosis. Cell Reports, 2014, 8, 10-19.	6.4	59
25	Elevated expression of the V-ATPase C subunit triggers JNK-dependent cell invasion and overgrowth in a <i>Drosophila</i> epithelium. DMM Disease Models and Mechanisms, 2013, 6, 689-700.	2.4	44
26	Drosophila ATP6AP2/VhaPRR functions both as a novel planar cell polarity core protein and a regulator of endosomal trafficking. EMBO Journal, 2013, 32, 245-259.	7.8	53
27	A distributed stochastic perception-action loop model of cell motility. , 2013, , .		0
28	Activation of the proton pump, V-ATPase, triggers JNK-dependent cell invasion and overgrowth in a <i>Drosophila</i> epithelium. Development (Cambridge), 2013, 140, e507-e507.	2.5	0
29	Functional Study of Mammalian Neph Proteins in Drosophila melanogaster. PLoS ONE, 2012, 7, e40300.	2.5	30
30	The role of proton transporters in epithelial Wnt signaling pathways. Pediatric Nephrology, 2011, 26, 1523-1527.	1.7	8
31	Old friends form alliance against podocytes. Kidney International, 2011, 80, 1117-1119.	5.2	4
32	Regulation of Frizzled-Dependent Planar Polarity Signaling by a V-ATPase Subunit. Current Biology, 2010, 20, 1269-1276.	3.9	113
33	Regulation of ciliary polarity by the APC/C. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17799-17804.	7.1	49
34	Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8579-8584.	7.1	133
35	Flying podocytes. Kidney International, 2009, 75, 455-457.	5.2	13
36	Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature Cell Biology, 2009, 11, 286-294.	10.3	160

MATIAS SIMONS

#	Article	IF	CITATIONS
37	Podocyte polarity signalling. Current Opinion in Nephrology and Hypertension, 2009, 18, 324-330.	2.0	37
38	Planar Cell Polarity Signaling: From Fly Development to Human Disease. Annual Review of Genetics, 2008, 42, 517-540.	7.6	488
39	Wnt Signaling in Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2007, 18, 1389-1398.	6.1	87
40	Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17079-17086.	7.1	262
41	Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genetics, 2005, 37, 537-543.	21.4	680
42	Molecular basis of the functionalpodocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Human Molecular Genetics, 2003, 12, 3397-3405.	2.9	231
43	Novel concepts in understanding and management of glomerular proteinuria. Nephrology Dialysis Transplantation, 2002, 17, 951-955.	0.7	31
44	Involvement of Lipid Rafts in Nephrin Phosphorylation and Organization of the Glomerular Slit Diaphragm. American Journal of Pathology, 2001, 159, 1069-1077.	3.8	142
45	Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. Journal of Clinical Investigation, 2001, 108, 1621-1629.	8.2	491