
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9076676/publications.pdf Version: 2024-02-01

IEAN LE RIDEAU

#	Article	IF	CITATIONS
1	Solid-state 3D micro-supercapacitors based on ionogel electrolyte: Influence of adding lithium and sodium salts to the ionic liquid. Energy Storage Materials, 2022, 50, 606-617.	18.0	14
2	Injectable macromolecule-based calcium phosphate bone substitutes. Materials Advances, 2022, 3, 6125-6141.	5.4	8
3	Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration. Polymers, 2021, 13, 526.	4.5	19
4	Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Interfaces, 2021, 13, 28281-28294.	8.0	21
5	The combined use of SEM, EPMA and FIB for the characterization of novel biomaterials for bone regeneration. Microscopy and Microanalysis, 2021, 27, 430-432.	0.4	0
6	Silica based ionogels: interface effects with aprotic and protic ionic liquids with lithium. Physical Chemistry Chemical Physics, 2020, 22, 24051-24058.	2.8	6
7	Reflow Soldering-Resistant Solid-State 3D Micro-Supercapacitors Based on Ionogel Electrolyte for Powering the Internet of Things. Journal of the Electrochemical Society, 2020, 167, 100551.	2.9	20
8	Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes. Journal of Power Sources, 2020, 460, 228111.	7.8	16
9	Editors' Choice—Understanding the Superior Cycling Performance of Si Anode in Highly Concentrated Phosphonium-Based Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2020, 167, 120520.	2.9	23
10	Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy and Environmental Science, 2019, 12, 96-115.	30.8	297
11	High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials, 2019, 21, 439-445.	18.0	66
12	Synthesis of calcium-deficient hydroxyapatite nanowires and nanotubes performed by template-assisted electrodeposition. Materials Science and Engineering C, 2019, 98, 333-346.	7.3	33
13	Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems. Biotechnology Advances, 2018, 36, 281-294.	11.7	95
14	Photo-Polymerized Organic Host Network of lonogels for Lithium Batteries: Effects of Mesh Size and of Ethylene Oxide Content. Journal of the Electrochemical Society, 2018, 165, A3179-A3185.	2.9	9
15	Water dynamics in silanized hydroxypropyl methylcellulose based hydrogels designed for tissue engineering. Carbohydrate Polymers, 2018, 202, 404-408.	10.2	13
16	PEO‣ilsesquioxane Flexible Membranes: Organicâ€Inorganic Solid Electrolytes with Controlled Homogeneity and Nanostructure. ChemistrySelect, 2017, 2, 2088-2093.	1.5	9
17	Silica nanofibers as a new drug delivery system: a study of the protein–silica interactions. Journal of Materials Chemistry B, 2017, 5, 2908-2920.	5.8	25
18	High Areal Energy 3Dâ€Interdigitated Microâ€5upercapacitors in Aqueous and Ionic Liquid Electrolytes. Advanced Materials Technologies, 2017, 2, 1700126.	5.8	77

#	Article	IF	CITATIONS
19	Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1: new insight into intervertebral disc regenerative medicine. Drug Delivery, 2017, 24, 999-1010.	5.7	32
20	Ionic Liquids Confined in Silica Ionogels: Structural, Thermal, and Dynamical Behaviors. Entropy, 2017, 19, 140.	2.2	11
21	Natural Rubber-Based Ionogels. Journal of Renewable Materials, 2017, , .	2.2	2
22	Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials. RSC Advances, 2016, 6, 74087-74099.	3.6	22
23	Silicon nanowires and nanotrees: elaboration and optimization of new 3D architectures for high performance on-chip supercapacitors. RSC Advances, 2016, 6, 81017-81027.	3.6	38
24	Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes. Journal of Power Sources, 2016, 330, 92-103.	7.8	15
25	Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. Journal of Materials Chemistry A, 2016, 4, 11835-11843.	10.3	50
26	Silica nanocarrier as a sustained delivery system of GDF5 for intervertebral disc regenerative medicine. Osteoarthritis and Cartilage, 2016, 24, S482.	1.3	0
27	Enhancement of lithium transport by controlling the mesoporosity of silica monoliths filled by ionic liquids. New Journal of Chemistry, 2016, 40, 4269-4276.	2.8	34
28	A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid. BioMed Research International, 2015, 2015, 1-9.	1.9	16
29	Ink-jet printed porous composite LiFePO 4 electrode from aqueous suspension for microbatteries. Journal of Power Sources, 2015, 287, 261-268.	7.8	95
30	lon segregation in an ionic liquid confined within chitosan based chemical ionogels. Physical Chemistry Chemical Physics, 2015, 17, 23947-23951.	2.8	37
31	Ionogel based on biopolymer–silica interpenetrated networks: dynamics of confined ionic liquid with lithium salt. Physical Chemistry Chemical Physics, 2015, 17, 29707-29713.	2.8	29
32	Toward fast and cost-effective ink-jet printing of solid electrolyte for lithium microbatteries. Journal of Power Sources, 2015, 274, 1085-1090.	7.8	105
33	Lithium Based Ionogel as Solid State Electrolyte: Dynamics of Confined Ionic Liquid, a Neutron Diffusion Study. ECS Transactions, 2014, 64, 27-31.	0.5	5
34	Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties. Advanced Energy Materials, 2014, 4, 1301570.	19.5	86
35	Biopolymer based nanocomposite ionogels: high performance, sustainable and solid electrolytes. Green Chemistry, 2014, 16, 1149-1152.	9.0	44
36	Destructuring ionic liquids in ionogels: enhanced fragility for solid devices. Physical Chemistry Chemical Physics, 2014, 16, 23639-23645.	2.8	51

#	Article	IF	CITATIONS
37	All Solid-State Symmetrical Activated Carbon Electrochemical Double Layer Capacitors Designed with Ionogel Electrolyte. ECS Electrochemistry Letters, 2014, 3, A112-A115.	1.9	45
38	Wide-voltage-window silicon nanowire electrodes for micro-supercapacitors via electrochemical surface oxidation in ionic liquid electrolyte. Electrochemistry Communications, 2014, 41, 31-34.	4.7	61
39	Design Polysaccharides of Marine Origin: Chemical Modifications to Reach Advanced Versatile Compounds. Current Organic Chemistry, 2014, 18, 867-895.	1.6	38
40	Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide. Journal of Materials Science: Materials in Medicine, 2013, 24, 1875-1884.	3.6	47
41	Ionic and electronic conductivities in carbon nanotubes – ionogel solid device. Journal of Materials Chemistry, 2011, 21, 2508-2511.	6.7	26
42	Multiscale Dynamics of Ionic Liquids Confined in Ionogel Membrane for Lithium Batteries. AlP Conference Proceedings, 2011, , .	0.4	1
43	Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews, 2011, 40, 907-925.	38.1	1,059
44	Solidâ€State Electrode Materials with Ionicâ€Liquid Properties for Energy Storage: the Lithium Solidâ€State Ionicâ€Liquid Concept Advanced Functional Materials, 2011, 21, 4073-4078.	14.9	84
45	Use of ionic liquids in sol-gel; ionogels and applications. Comptes Rendus Chimie, 2010, 13, 242-255.	0.5	177
46	Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods. Journal of Materials Science: Materials in Medicine, 2010, 21, 1163-1168.	3.6	13
47	Multiscale dynamics of 1H and 19F in confined ionogels for lithium batteries. Comptes Rendus Chimie, 2010, 13, 409-411.	0.5	20
48	Bimodal porous silica monoliths obtained by phase separation in non-aqueous media. Journal of Materials Chemistry, 2010, 20, 964-971.	6.7	21
49	Immobilization of ionic liquids in translucent tin dioxide monoliths by sol–gel processing. Dalton Transactions, 2009, , 1307.	3.3	39
50	Lanthanide-doped luminescent ionogels. Dalton Transactions, 2009, , 298-306.	3.3	142
51	Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study. Physical Chemistry Chemical Physics, 2007, 9, 5419.	2.8	144
52	Luminescent lonogels Based on Europium-Doped Ionic Liquids Confined within Silica-Derived Networks. Chemistry of Materials, 2006, 18, 5711-5715.	6.7	231
53	Ionogels, New Materials Arising from the Confinement of Ionic Liquids within Silica-Derived Networks. Chemistry of Materials, 2006, 18, 3931-3936.	6.7	394
54	Electroactive poly zinc, cadmium, manganese ferrocenylphenylphosphinates. Journal of Organometallic Chemistry, 2005, 690, 363-370.	1.8	11

#	Article	IF	CITATIONS
55	Ferrocenylphosphonic acid: from molecule to electro-active hybrid materials. Comptes Rendus Chimie, 2005, 8, 1237-1242.	0.5	3
56	Redox-active pH-responsive molecules: ferrocenylphosphonic acid, ferrocenylmethylphosphonic acid and 1,1′-ferrocenylbisphosphonic acid. Structural determination of FcPO3Na2·5H2O. Dalton Transactions, 2005, , 1903.	3.3	6
57	A route to heat resistant solid membranes with performances of liquid electrolytes. Chemical Communications, 2005, , 1082-1084.	4.1	139
58	Versatile heat resistant solid electrolytes with performances of liquid electrolytes. Progress in Solid State Chemistry, 2005, 33, 217-222.	7.2	70
59	Improved synthesis of diethyl ferrocenylphosphonate, crystal structure of (FcPO3Et2)2·ZnCl2, and electrochemistry of ferrocenylphosphonates, FcP(O)(OR)2, FcCH2P(O)(OR)2, 1,1â€ ² -fc[P(O)(OR)2]2 and [FcP(O)(OEt)2]2·ZnCl2 (Fc=(η5C5H5)Fe(η5C5H4), fc=(η5C5H4)Fe(η5C5H4), R=Et, H). Journal of Organometallic Chemistry. 2004. 689. 2654-2661.	1.8	30
60	Mixed 1Dâ^'2D Inorganic Polymeric Zinc Ferrocenylphosphonate:Â Crystal Structure and Electrochemical Study. Journal of the American Chemical Society, 2004, 126, 12090-12096.	13.7	31
61	Synthesis and Solid-State NMR Studies of P-Vinylbenzylphosphonic Acid. Chemistry - A European Journal, 2003, 9, 770-775.	3.3	20
62	Polarized-Dependent IR ATR Study for the Structural Characterization of Solid-State Phosphonates:Â Case of Aluminum (4-Carboxyphenyl)methylphosphonate. Chemistry of Materials, 2003, 15, 1950-1956.	6.7	29
63	Structural and magnetic studies of the [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O thermal derivatives. Journal of Materials Chemistry, 2003, 13, 795-799.	6.7	15
64	Synthesis and Characterization of New Stable α,ω-Organo(bis-silanetriols). Organometallics, 2002, 21, 1560-1564.	2.3	28
65	27Al MAS NMR and XAS cross-study of the aluminophosphonate Al(OH)(O3PC6H5)Electronic supplementary information (ESI) available: X-ray powder diffraction pattern of Al(OH)(O3PC6H5). See http://www.rsc.org/suppdata/nj/b1/b106545a/. New Journal of Chemistry, 2001, 25, 1365-1367.	2.8	12
66	Synthesis of Stable Organo(bis-silanetriols): X-Ray Powder Structure of 1,4-Bis(trihydroxysilyl)benzene. Angewandte Chemie - International Edition, 2000, 39, 4533-4537.	13.8	71
67	Novel aluminium phenyl, benzyl, and bromobenzylphosphonates: structural characterisation and hydration–dehydration reactions. Journal of Materials Chemistry, 2000, 10, 1593-1601.	6.7	17
68	Nitroxide-Substituted Phenylphosphonic Acid:Â A New Building Block for the Design and Study of Magnetic Layered Materials. Chemistry of Materials, 2000, 12, 264-267.	6.7	4
69	Toward Prediction of Magnetic Properties in Layered Vanadyl Phosphonates:  Correlation of Magnetic Exchange with the Hammett σ Parameter. Journal of the American Chemical Society, 1997, 119, 1313-1316.	13.7	32
70	A new family of 2D antiferromagnets: the layered phosphonates MII (RPO3) · H2O; M  Mn, Fe, Co, Ni; R = alkyl, phenyl. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1719-1720.	2.3	29
71	Synthesis, Structure and Magnetic Properties of Some New Metal (II) Phosphonates: Layered Fe(C ₂ H ₅ PO ₃) H ₂ O and α-Cu(C ₂ H ₅ PO ₃), Tubular β-Cu(CH ₃ PO ₃). Materials Science Forum. 1994. 152-153. 365-370.	0.3	0
72	Novel structural arrangement for divalent metal phosphonates: synthesis of tert-butylphosphonates and structure of Co[(CH3)3CPO3]·H2O. Journal of Materials Chemistry, 1994, 4, 1319-1323.	6.7	12

#	Article	IF	CITATIONS
73	Preparation, Structure, and Magnetic Properties of Copper(II) PhosphonatesbetaCull(CH3PO3), an Original Three-Dimensional Structure with a Channel-Type Arrangement. Inorganic Chemistry, 1994, 33, 4885-4890.	4.0	167
74	Synthesis, structure, and magnetic properties of a new lamellar iron phosphonate, FeII(C2H5PO3).H2O. Chemistry of Materials, 1993, 5, 583-587.	6.7	93
75	Preparation and structure of copper(II) ethylphosphonate. Structural transition between its hydrated and dehydrated forms. Inorganic Chemistry, 1993, 32, 4617-4620.	4.0	60
76	Hybrid Organic-Inorganic Materials Based on Organophosphorus Derivatives. Topics in Current Chemistry, 0, , 145-174.	4.0	120
77	Ionic Transport and Charge Distribution in Miniaturized Electrochemical Energy Storage Devices byModeling Investigation. Journal of the Electrochemical Society, 0, , .	2.9	1