Sara Cherry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9075377/publications.pdf

Version: 2024-02-01

88 papers	14,632 citations	47006 47 h-index	85 g-index
118	118	118	32113 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2848-2865.	6.4	102
2	Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2. Nature, 2022, 604, 134-140.	27.8	108
3	Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages. MBio, 2022, 13, e0375121.	4.1	18
4	Abstract LB188: Identification of intrinsic molecular vulnerabilities in inherited and treatment-related hypermutant patient-derived glioma cell line models. Cancer Research, 2022, 82, LB188-LB188.	0.9	0
5	Alternative splicing redefines landscape of commonly mutated genes in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	24
6	Drug repurposing screens reveal cell-type-specific entry pathways and FDA-approved drugs active against SARS-Cov-2. Cell Reports, 2021, 35, 108959.	6.4	176
7	High-throughput screening of the ReFRAME, Pandemic Box, and COVID Box drug repurposing libraries against SARS-CoV-2 nsp15 endoribonuclease to identify small-molecule inhibitors of viral activity. PLoS ONE, 2021, 16, e0250019.	2.5	27
8	Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell, 2021, 184, 1858-1864.e10.	28.9	332
9	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	123
10	Lipid droplet screen in human hepatocytes identifies TRRAP as a regulator of cellular triglyceride metabolism. Clinical and Translational Science, 2021, 14, 1369-1379.	3.1	4
11	SARS-CoV-2 viral proteins NSP1 and NSP13 inhibit interferon activation through distinct mechanisms. PLoS ONE, 2021, 16, e0253089.	2.5	75
12	Femtomolar SARS-CoV-2 Antigen Detection Using the Microbubbling Digital Assay with Smartphone Readout Enables Antigen Burden Quantitation and Tracking. Clinical Chemistry, 2021, 68, 230-239.	3.2	11
13	Targeting the coronavirus nucleocapsid protein through GSK-3 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
14	Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses, 2021, 13, 13.	3.3	22
15	Orally acquired cyclic dinucleotides drive dSTING-dependent antiviral immunity in enterocytes. Cell Reports, 2021, 37, 110150.	6.4	10
16	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	12.6	1,280
17	Deciphering flavivirus–host interactions using quantitative proteomics. Current Opinion in Immunology, 2020, 66, 90-97.	5.5	4
18	DDX56 Binds to Chikungunya Virus RNA To Control Infection. MBio, 2020, 11, .	4.1	15

#	Article	IF	CITATIONS
19	Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes and Development, 2020, 34, 1005-1016.	5.9	61
20	JEM women in STEM: Unique journeys with a common purpose. Journal of Experimental Medicine, 2020, 217, .	8.5	1
21	Using Diverse Model Systems to Define Intestinal Epithelial Defenses to Enteric Viral Infections. Cell Host and Microbe, 2020, 27, 329-344.	11.0	21
22	DEAD-Box Helicases: Sensors, Regulators, and Effectors for Antiviral Defense. Viruses, 2020, 12, 181.	3.3	79
23	An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host and Microbe, 2020, 27, 428-440.e9.	11.0	26
24	Drosophila melanogaster as a model for arbovirus infection of adult salivary glands. Virology, 2020, 543, 1-6.	2.4	7
25	Viral-induced alternative splicing of host genes promotes influenza replication. ELife, 2020, 9, .	6.0	46
26	DNA mismatch repair is required for the host innate response and controls cellular fate after influenza virus infection. Nature Microbiology, 2019, 4, 1964-1977.	13.3	24
27	Sirtuin Inhibitors Are Broadly Antiviral against Arboviruses. MBio, 2019, 10, .	4.1	15
28	Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Reports, 2019, 28, 2647-2658.e5.	6.4	55
29	Going in Circles: The Black Box of Circular RNA Immunogenicity. Molecular Cell, 2019, 76, 3-5.	9.7	19
30	The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes and Development, 2019, 33, 1525-1538.	5.9	113
31	Identification of antiviral roles for the exon–junction complex and nonsense-mediated decay in flaviviral infection. Nature Microbiology, 2019, 4, 985-995.	13.3	52
32	Encephalomyocarditis Virus Entry Unveiled. MBio, 2019, 10, .	4.1	1
33	Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. Journal of Leukocyte Biology, 2019, 106, 83-93.	3.3	15
34	Zika virus infection activates sting-dependent antiviral autophagy in the <i>Drosophila</i> brain. Autophagy, 2019, 15, 174-175.	9.1	31
35	Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4246-4251.	7.1	89
36	Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Analytical Chemistry, 2018, 90, 4823-4831.	6.5	95

3

#	Article	IF	CITATIONS
37	Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell, 2018, 175, 1931-1945.e18.	28.9	252
38	From chemistry to fruit flies: An unpredictable series of fortunate conversations. PLoS Pathogens, 2018, 14, e1007077.	4.7	0
39	Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host and Microbe, 2018, 24, 57-68.e3.	11.0	195
40	Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus. Cell Reports, 2017, 18, 804-815.	6.4	144
41	Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host and Microbe, 2017, 21, 208-219.	11.0	239
42	A RHIM with a View: FLYing with Functional Amyloids. Immunity, 2017, 47, 604-606.	14.3	2
43	The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Molecular Cell, 2017, 68, 940-954.e3.	9.7	319
44	MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Science Signaling, 2017, 10, .	3.6	15
45	RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature, 2017, 547, 114-117.	27.8	57
46	Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses, 2017, 9, 2.	3.3	56
47	Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host and Microbe, 2016, 19, 705-712.	11.0	464
48	A conserved virus-induced cytoplasmic TRAMP-like complex recruits the exosome to target viral RNA for degradation. Genes and Development, 2016, 30, 1658-1670.	5.9	49
49	Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Analytical Chemistry, 2016, 88, 7289-7294.	6.5	263
50	A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature, 2016, 535, 164-168.	27.8	327
51	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
52	The Orphan Nuclear Receptor TLX Is an Enhancer of STAT1-Mediated Transcription and Immunity to Toxoplasma gondii. PLoS Biology, 2015, 13, e1002200.	5.6	25
53	Virus-induced translational arrest through 4EBP1/2-dependent decay of 5′-TOP mRNAs restricts viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2920-9.	7.1	45
54	RNASEK is required for internalization of diverse acid-dependent viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7797-7802.	7.1	48

#	Article	IF	Citations
55	The Transcription Factor FoxK Participates with Nup98 To Regulate Antiviral Gene Expression. MBio, 2015, 6, .	4.1	21
56	A genome-wide RNAi screening method to discover novel genes involved in virus infection. Methods, 2015, 91, 75-81.	3.8	8
57	RIP3 Regulates Autophagy and Promotes Coxsackievirus B3 Infection of Intestinal Epithelial Cells. Cell Host and Microbe, 2015, 18, 221-232.	11.0	59
58	Combinatorial control of <i>Drosophila</i> circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes and Development, 2015, 29, 2168-2182.	5.9	419
59	Virus-Host Interactions: From Unbiased Genetic Screens to Function. Annual Review of Virology, 2015, 2, 497-524.	6.7	40
60	Microbiota-Dependent Priming of Antiviral Intestinal Immunity in Drosophila. Cell Host and Microbe, 2015, 18, 571-581.	11.0	135
61	The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection. PLoS Pathogens, 2014, 10, e1003911.	4.7	80
62	Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection. PLoS Pathogens, 2014, 10, e1003914.	4.7	78
63	Immunity in Drosophila melanogaster — from microbial recognition to whole-organism physiology. Nature Reviews Immunology, 2014, 14, 796-810.	22.7	661
64	Drosha as an interferon-independent antiviral factor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7108-7113.	7.1	64
65	Antiviral Autophagy Restricts Rift Valley Fever Virus Infection and Is Conserved from Flies to Mammals. Immunity, 2014, 40, 51-65.	14.3	138
66	Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense. Cell, 2014, 158, 764-777.	28.9	103
67	Nup98 promotes antiviral gene expression to restrict RNA viral infection in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3890-9.	7.1	39
68	Asparagine Plays a Critical Role in Regulating Cellular Adaptation to Glutamine Depletion. Molecular Cell, 2014, 56, 205-218.	9.7	347
69	Viruses and antiviral immunity in Drosophila. Developmental and Comparative Immunology, 2014, 42, 67-84.	2.3	117
70	Genome-wide RNAi Screen Identifies SEC61A and VCP as Conserved Regulators of Sindbis Virus Entry. Cell Reports, 2013, 5, 1737-1748.	6.4	57
71	Bunyaviral cap-snatching vs. decapping: Recycling cell cycle mRNAs. Cell Cycle, 2013, 12, 3711-3712.	2.6	15
72	A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes and Development, 2013, 27, 1511-1525.	5.9	86

#	Article	IF	CITATIONS
73	ERK signaling couples nutrient status to antiviral defense in the insect gut. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15025-15030.	7.1	88
74	Transcriptional Pausing Controls a Rapid Antiviral Innate Immune Response in Drosophila. Cell Host and Microbe, 2012, 12, 531-543.	11.0	78
75	Virus Recognition by Toll-7 Activates Antiviral Autophagy in Drosophila. Immunity, 2012, 36, 658-667.	14.3	237
76	Viral Immunofluorescence with Rift Valley Fever Virus Infected MEFs in a 96 Well Plate. Bio-protocol, 2012, 2, .	0.4	0
77	Natural Resistance-Associated Macrophage Protein Is a Cellular Receptor for Sindbis Virus in Both Insect and Mammalian Hosts. Cell Host and Microbe, 2011, 10, 97-104.	11.0	135
78	RNAi Screening for Host Factors Involved in Viral Infection Using Drosophila Cells. Methods in Molecular Biology, 2011, 721, 375-382.	0.9	8
79	RNAi screening reveals new players in the defense against RNA viruses. FASEB Journal, 2011, 25, 941.5.	0.5	0
80	Rift Valley Fever Virus Infection of Human Cells and Insect Hosts Is Promoted by Protein Kinase C Epsilon. PLoS ONE, 2010, 5, e15483.	2.5	47
81	VSV infection is sensed by Drosophila, attenuates nutrient signaling, and thereby activates antiviral autophagy. Autophagy, 2009, 5, 1062-1063.	9.1	22
82	Autophagy Is an Essential Component of Drosophila Immunity against Vesicular Stomatitis Virus. Immunity, 2009, 30, 588-598.	14.3	417
83	What have RNAi screens taught us about viral–host interactions?. Current Opinion in Microbiology, 2009, 12, 446-452.	5.1	57
84	Genomic RNAi screening in Drosophila S2 cells: what have we learned about host–pathogen interactions?. Current Opinion in Microbiology, 2008, 11, 262-270.	5.1	54
85	Host-pathogen interactions in drosophila: new tricks from an old friend. Nature Immunology, 2006, 7, 911-917.	14.5	196
86	COPI Activity Coupled with Fatty Acid Biosynthesis Is Required for Viral Replication. PLoS Pathogens, 2006, 2, e102.	4.7	111
87	Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes and Development, 2005, 19, 445-452.	5.9	193
88	Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nature Immunology, 2004, 5, 81-87.	14.5	105