Amit R Reddi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9073269/publications.pdf

Version: 2024-02-01

25 papers 1,374 citations

394421 19 h-index 25 g-index

32 all docs

 $\begin{array}{c} 32 \\ \text{docs citations} \end{array}$

times ranked

32

1588 citing authors

#	Article	IF	CITATIONS
1	Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. Journal of Biological Chemistry, 2022, 298, 101549.	3.4	10
2	Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	32
3	One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118881.	4.1	46
4	Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochemical and Biophysical Research Communications, 2021, 534, 720-726.	2.1	10
5	Using genetically encoded heme sensors to probe the mechanisms of heme uptake and homeostasis in <scp> <i>Candida albicans</i> </scp> . Cellular Microbiology, 2021, 23, e13282.	2.1	14
6	Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase. Redox Biology, 2021, 46, 102125.	9.0	19
7	Cutting in-line with iron: ribosomal function and non-oxidative RNA cleavage. Nucleic Acids Research, 2020, 48, 8663-8674.	14.5	18
8	Human ribosomal G-quadruplexes regulate heme bioavailability. Journal of Biological Chemistry, 2020, 295, 14855-14865.	3.4	32
9	From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells, 2020, 9, 579.	4.1	71
10	Mitochondrial-nuclear heme trafficking is regulated by GTPases in control of mitochondrial dynamics and ER contact sites. Journal of Cell Science, 2020, 133, .	2.0	29
11	Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radical Biology and Medicine, 2019, 133, 88-100.	2.9	98
12	Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biology, 2019, 21, 101064.	9.0	39
13	Multiple prebiotic metals mediate translation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12164-12169.	7.1	48
14	Heme bioavailability and signaling in response to stress in yeast cells. Journal of Biological Chemistry, 2018, 293, 12378-12393.	3.4	32
15	Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. Journal of Biological Chemistry, 2018, 293, 14557-14568.	3.4	93
16	Heme and hemoglobin suppress amyloid $\hat{l}^2\hat{a}\in$ mediated inflammatory activation of mouse astrocytes. Journal of Biological Chemistry, 2018, 293, 11358-11373.	3.4	25
17	Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors. Biochemistry, 2017, 56, 1815-1823.	2.5	49
18	Acylation of Superoxide Dismutase 1 (SOD1) at K122 Governs SOD1-Mediated Inhibition of Mitochondrial Respiration. Molecular and Cellular Biology, 2017, 37, .	2.3	16

Amit R Reddi

#	Article	IF	CITATION
19	Regulation of intracellular heme trafficking revealed by subcellular reporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5144-52.	7.1	98
20	Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7539-7544.	7.1	154
21	Heme Mobilization in Animals: A Metallolipid's Journey. Accounts of Chemical Research, 2016, 49, 1104-1110.	15.6	92
22	SOD1 Integrates Signals from Oxygen and Glucose to Repress Respiration. Cell, 2013, 152, 224-235.	28.9	186
23	Role of Protons in the Thermodynamic Contribution of a Zn(II)-Cys4Site toward Metalloprotein Stabilityâ€. Biochemistry, 2007, 46, 3745-3758.	2.5	39
24	Thermodynamic Investigation into the Mechanisms of Proton-Coupled Electron Transfer Events in Heme Protein Maquettesâ€. Biochemistry, 2007, 46, 291-305.	2.5	34
25	Deducing the Energetic Cost of Protein Folding in Zinc Finger Proteins Using Designed Metallopeptides. Journal of the American Chemical Society, 2007, 129, 12815-12827.	13.7	87