
A Paul Alivisatos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/907260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996, 271, 933-937.	12.6	10,633
2	Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281, 2013-2016.	12.6	7,948
3	Hybrid Nanorod-Polymer Solar Cells. Science, 2002, 295, 2425-2427.	12.6	4,844
4	Shape control of CdSe nanocrystals. Nature, 2000, 404, 59-61.	27.8	4,216
5	Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370, 354-357.	27.8	3,933
6	Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science, 2004, 304, 711-714.	12.6	3,255
7	Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature, 2005, 437, 664-670.	27.8	2,996
8	Organization of 'nanocrystal molecules' using DNA. Nature, 1996, 382, 609-611.	27.8	2,852
9	The use of nanocrystals in biological detection. Nature Biotechnology, 2004, 22, 47-52.	17.5	2,849
10	Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. Journal of the American Chemical Society, 1997, 119, 7019-7029.	13.7	2,305
11	Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing―of Size Distributions. Journal of the American Chemical Society, 1998, 120, 5343-5344.	13.7	1,779
12	Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. Journal of the American Chemical Society, 2000, 122, 12700-12706.	13.7	1,719
13	Nanomechanical oscillations in a single-C60 transistor. Nature, 2000, 407, 57-60.	27.8	1,676
14	Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science, 2005, 310, 462-465.	12.6	1,630
15	Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials, 2011, 10, 361-366.	27.5	1,520
16	A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnology, 2005, 23, 741-745.	17.5	1,431
17	Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B, 1996, 54, 17628-17637.	3.2	1,421
18	Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Materials, 2003, 2, 382-385.	27.5	1,373

#	Article	IF	CITATIONS
19	Quantum Dots as Cellular Probes. Annual Review of Biomedical Engineering, 2005, 7, 55-76.	12.3	1,290
20	Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. Journal of Physical Chemistry B, 2001, 105, 8861-8871.	2.6	1,221
21	Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science, 2009, 324, 1309-1312.	12.6	1,200
22	A single-electron transistor made from a cadmium selenide nanocrystal. Nature, 1997, 389, 699-701.	27.8	1,183
23	Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-1521.	12.6	1,159
24	Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science, 2001, 292, 2060-2063.	12.6	1,136
25	Cation Exchange Reactions in Ionic Nanocrystals. Science, 2004, 306, 1009-1012.	12.6	1,135
26	Colloidal nanocrystal heterostructures with linear and branched topology. Nature, 2004, 430, 190-195.	27.8	1,127
27	Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment. Environmental Science & Technology, 2009, 43, 2072-2077.	10.0	1,042
28	Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society, 2015, 137, 16008-16011.	13.7	1,004
29	High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science, 2012, 336, 61-64.	12.6	989
30	Melting in Semiconductor Nanocrystals. Science, 1992, 256, 1425-1427.	12.6	969
31	Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10, 631-636.	27.5	863
32	Fabrication of metallic electrodes with nanometer separation by electromigration. Applied Physics Letters, 1999, 75, 301-303.	3.3	817
33	Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Letters, 2007, 7, 2951-2959.	9.1	717
34	Surface derivatization and isolation of semiconductor cluster molecules. Journal of the American Chemical Society, 1988, 110, 3046-3050.	13.7	714
35	Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr ₃ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano, 2016, 10, 7943-7954.	14.6	713
36	Essentially Trap-Free CsPbBr ₃ Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. Journal of the American Chemical Society, 2017, 139, 6566-6569.	13.7	711

#	Article	IF	CITATIONS
37	A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides. Journal of the American Chemical Society, 1999, 121, 11595-11596.	13.7	706
38	Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14, R15-R27.	2.6	698
39	Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange. Science, 2007, 317, 355-358.	12.6	675
40	Synthesis of hcp-Co Nanodisks. Journal of the American Chemical Society, 2002, 124, 12874-12880.	13.7	651
41	Tunable Localized Surface Plasmon Resonances in Tungsten Oxide Nanocrystals. Journal of the American Chemical Society, 2012, 134, 3995-3998.	13.7	646
42	DNA-Based Assembly of Gold Nanocrystals. Angewandte Chemie - International Edition, 1999, 38, 1808-1812.	13.8	639
43	Synthesis and Photovoltaic Application of Copper(I) Sulfide Nanocrystals. Nano Letters, 2008, 8, 2551-2555.	9.1	633
44	Thermochromic halide perovskite solar cells. Nature Materials, 2018, 17, 261-267.	27.5	630
45	Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Letters, 2001, 1, 349-351.	9.1	593
46	Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. Journal of the American Chemical Society, 1992, 114, 5221-5230.	13.7	589
47	Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. Journal of Physical Chemistry Letters, 2010, 1, 1051-1054.	4.6	573
48	Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO2Nanocrystals. Journal of the American Chemical Society, 2003, 125, 15981-15985.	13.7	556
49	CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices. Advanced Materials, 1999, 11, 923-927.	21.0	546
50	Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science, 1997, 276, 398-401.	12.6	545
51	Transition from Isolated to Collective Modes in Plasmonic Oligomers. Nano Letters, 2010, 10, 2721-2726.	9.1	544
52	Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. Journal of the American Chemical Society, 2002, 124, 7136-7145.	13.7	539
53	Calibration of Dynamic Molecular Rulers Based on Plasmon Coupling between Gold Nanoparticles. Nano Letters, 2005, 5, 2246-2252.	9.1	539
54	Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science, 2001, 291, 2115-2117.	12.6	523

#	Article	IF	CITATIONS
55	Three-Dimensional Plasmon Rulers. Science, 2011, 332, 1407-1410.	12.6	522
56	The Brain Activity Map Project and the Challenge of Functional Connectomics. Neuron, 2012, 74, 970-974.	8.1	512
57	Integration of Colloidal Nanocrystals into Lithographically Patterned Devices. Nano Letters, 2004, 4, 1093-1098.	9.1	507
58	Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals. Science, 1994, 265, 373-376.	12.6	499
59	Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds. Journal of the American Chemical Society, 2009, 131, 8455-8459.	13.7	473
60	Enhanced Electrochemical Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. Journal of the American Chemical Society, 2014, 136, 13319-13325.	13.7	465
61	Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy. Nano Letters, 2005, 5, 301-304.	9.1	461
62	Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates. Nano Letters, 2001, 1, 32-35.	9.1	457
63	Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Applied Physics Letters, 1996, 69, 1432-1434.	3.3	447
64	Design Principles for Trap-Free CsPbX ₃ Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. Journal of the American Chemical Society, 2018, 140, 17760-17772.	13.7	446
65	Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based on Hyperbranched Semiconductor Nanocrystals. Nano Letters, 2007, 7, 409-414.	9.1	445
66	Employing End-Functional Polythiophene To Control the Morphology of Nanocrystalâ^'Polymer Composites in Hybrid Solar Cells. Journal of the American Chemical Society, 2004, 126, 6550-6551.	13.7	440
67	Photovoltaic Devices Employing Ternary PbS _{<i>x</i>} Se _{1<i>-x</i>} Nanocrystals. Nano Letters, 2009, 9, 1699-1703.	9.1	433
68	Controlling the Morphology of Nanocrystal–Polymer Composites for Solar Cells. Advanced Functional Materials, 2003, 13, 73-79.	14.9	432
69	Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Materials, 2009, 8, 979-985.	27.5	431
70	From Molecules to Materials: Current Trends and Future Directions. Advanced Materials, 1998, 10, 1297-1336.	21.0	429
71	Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs. Nano Letters, 2006, 6, 1502-1504.	9.1	421
72	BIOMINERALIZATION: Enhanced: Naturally Aligned Nanocrystals. Science, 2000, 289, 736-737.	12.6	415

#	Article	IF	CITATIONS
73	Optical Properties of ZnO/ZnS and ZnO/ZnTe Heterostructures for Photovoltaic Applications. Nano Letters, 2007, 7, 2377-2382.	9.1	408
74	Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science, 2014, 344, 1380-1384.	12.6	404
75	Cation Exchange: A Versatile Tool for Nanomaterials Synthesis. Journal of Physical Chemistry C, 2013, 117, 19759-19770.	3.1	402
76	Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. ACS Applied Materials & Interfaces, 2016, 8, 35523-35533.	8.0	398
77	Synthesis of Composition Tunable and Highly Luminescent Cesium Lead Halide Nanowires through Anion-Exchange Reactions. Journal of the American Chemical Society, 2016, 138, 7236-7239.	13.7	397
78	Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs ₄ PbBr ₆ Nanocrystals. Journal of the American Chemical Society, 2017, 139, 5309-5312.	13.7	389
79	Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Advanced Materials, 2002, 14, 882.	21.0	386
80	Mechanistic Study of Precursor Evolution in Colloidal Group IIâ^'VI Semiconductor Nanocrystal Synthesis. Journal of the American Chemical Society, 2007, 129, 305-312.	13.7	375
81	Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. Journal of the American Chemical Society, 2009, 131, 5285-5293.	13.7	372
82	Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. Single Molecules, 2001, 2, 261-276.	0.9	365
83	Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics, 1988, 89, 4001-4011.	3.0	357
84	The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. Journal of Chemical Physics, 1995, 102, 4642-4656.	3.0	356
85	Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters, 2006, 6, 1479-1482.	9.1	353
86	Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials, 2006, 16, 1389-1399.	14.9	351
87	Reaction Chemistry and Ligand Exchange at Cadmiumâ^'Selenide Nanocrystal Surfaces. Journal of the American Chemical Society, 2008, 130, 12279-12281.	13.7	351
88	Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer. Nano Letters, 2010, 10, 2655-2660.	9.1	351
89	High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets. Journal of the American Chemical Society, 2005, 127, 13854-13861.	13.7	347
90	An approach to electrical studies of single nanocrystals. Applied Physics Letters, 1996, 68, 2574-2576.	3.3	337

#	Article	IF	CITATIONS
91	Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001, 26, 825.	3.3	332
92	Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors. Nano Letters, 2003, 3, 199-201.	9.1	330
93	Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements. Nano Letters, 2006, 6, 800-808.	9.1	330
94	Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. Journal of the American Chemical Society, 2009, 131, 16851-16857.	13.7	329
95	Nanotools for Neuroscience and Brain Activity Mapping. ACS Nano, 2013, 7, 1850-1866.	14.6	323
96	Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. Nano Letters, 2003, 3, 33-36.	9.1	318
97	Crystal Splitting in the Growth of Bi2S3. Nano Letters, 2006, 6, 2701-2706.	9.1	315
98	Quantification of Thin Film Crystallographic Orientation Using X-ray Diffraction with an Area Detector. Langmuir, 2010, 26, 9146-9151.	3.5	315
99	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chemistry of Materials, 2002, 14, 2113-2119.	6.7	312
100	Gold/Iron Oxide Core/Hollow‧hell Nanoparticles. Advanced Materials, 2008, 20, 4323-4329.	21.0	308
101	Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9461-9466.	7.1	304
102	Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal Îμ-Co nanoparticles. Applied Physics Letters, 2001, 78, 2187-2189.	3.3	303
103	Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Analytical Chemistry, 2003, 75, 4766-4772.	6.5	302
104	Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chemical Physics Letters, 2000, 329, 399-404.	2.6	301
105	The Effect of Organic Ligand Binding on the Growth of CdSe Nanoparticles Probed by Ab Initio Calculations. Nano Letters, 2004, 4, 2361-2365.	9.1	301
106	Vacancy Coalescence during Oxidation of Iron Nanoparticles. Journal of the American Chemical Society, 2007, 129, 10358-10360.	13.7	298
107	Semiconductor Nanorod Liquid Crystals. Nano Letters, 2002, 2, 557-560.	9.1	297
108	Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nature Materials, 2004, 3, 263-268.	27.5	297

#	Article	IF	CITATIONS
109	Sorting Fluorescent Nanocrystals with DNA. Journal of the American Chemical Society, 2002, 124, 7070-7074.	13.7	293
110	Ferroelectric order in individual nanometre-scale crystals. Nature Materials, 2012, 11, 700-709.	27.5	292
111	Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Physical Review B, 1994, 49, 14435-14447.	3.2	288
112	Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ Transmission Electron Microscopy. Nano Letters, 2009, 9, 2460-2465.	9.1	282
113	First-Principles Modeling of Unpassivated and Surfactant-Passivated Bulk Facets of Wurtzite CdSe:  A Model System for Studying the Anisotropic Growth of CdSe Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 6183-6192.	2.6	280
114	Precise Tuning of Surface Quenching for Luminescence Enhancement in Core–Shell Lanthanide-Doped Nanocrystals. Nano Letters, 2016, 16, 7241-7247.	9.1	279
115	Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. Journal of Chemical Physics, 1989, 90, 3463-3468.	3.0	277
116	Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2667-2672.	7.1	268
117	A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology, 2006, 1, 47-52.	31.5	266
118	The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver–Bismuth Halide Compositions. Nano Letters, 2018, 18, 3502-3508.	9.1	265
119	Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Physical Review B, 2003, 67, .	3.2	254
120	Nanoheterostructure Cation Exchange: Anionic Framework Conservation. Journal of the American Chemical Society, 2010, 132, 9997-9999.	13.7	253
121	Organometallic synthesis of gallium-arsenide crystallites, exhibiting quantum confinement. Journal of the American Chemical Society, 1990, 112, 9438-9439.	13.7	250
122	Structural and spectroscopic investigations of CdS/HgS/CdS quantum-dot quantum wells. Physical Review B, 1996, 53, R13242-R13245.	3.2	246
123	Discrete Nanostructures of Quantum Dots/Au with DNA. Journal of the American Chemical Society, 2004, 126, 10832-10833.	13.7	246
124	Faceting of Nanocrystals during Chemical Transformation:Â From Solid Silver Spheres to Hollow Gold Octahedra. Journal of the American Chemical Society, 2006, 128, 12671-12673.	13.7	245
125	Hybrid Organic–Nanocrystal Solar Cells. MRS Bulletin, 2005, 30, 41-44.	3.5	244
126	Device-Scale Perpendicular Alignment of Colloidal Nanorods. Nano Letters, 2010, 10, 195-201.	9.1	241

#	Article	IF	CITATIONS
127	The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks. Journal of the American Chemical Society, 2006, 128, 1675-1682.	13.7	240
128	Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. Journal of Chemical Physics, 1993, 98, 8432-8442.	3.0	238
129	3D structure of individual nanocrystals in solution by electron microscopy. Science, 2015, 349, 290-295.	12.6	238
130	Activation Volumes for Solid-Solid Transformations in Nanocrystals. Science, 2001, 293, 1803-1806.	12.6	234
131	Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 2016, 138, 13155-13158.	13.7	234
132	Precursor Conversion Kinetics and the Nucleation of Cadmium Selenide Nanocrystals. Journal of the American Chemical Society, 2010, 132, 18206-18213.	13.7	230
133	Continuous Distribution of Emission States from Single CdSe/ZnS Quantum Dots. Nano Letters, 2006, 6, 843-847.	9.1	228
134	Semiconductor Nanorod Liquid Crystals and Their Assembly on a Substrate. Advanced Materials, 2003, 15, 408-411.	21.0	226
135	Spin coherence in semiconductor quantum dots. Physical Review B, 1999, 59, R10421-R10424.	3.2	224
136	Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling. Nano Letters, 2012, 12, 2894-2900.	9.1	224
137	Pressure-Induced Structural Transformations in Si Nanocrystals: Surface and Shape Effects. Physical Review Letters, 1996, 76, 4384-4387.	7.8	221
138	Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles. Journal of the American Chemical Society, 2009, 131, 13943-13945.	13.7	221
139	Observation of Transient Structural-Transformation Dynamics in a Cu ₂ S Nanorod. Science, 2011, 333, 206-209.	12.6	220
140	Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. Journal of Chemical Physics, 1999, 110, 1195-1201.	3.0	214
141	Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings. Journal of Physical Chemistry B, 2002, 106, 11758-11763.	2.6	214
142	Photovoltaic Performance of Ultrasmall PbSe Quantum Dots. ACS Nano, 2011, 5, 8140-8147.	14.6	210
143	Controlled Synthesis of Hyperbranched Inorganic Nanocrystals with Rich Three-Dimensional Structures. Nano Letters, 2005, 5, 2164-2167.	9.1	207
144	Single-particle mapping of nonequilibrium nanocrystal transformations. Science, 2016, 354, 874-877.	12.6	204

#	Article	IF	CITATIONS
145	Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nature Communications, 2015, 6, 10052.	12.8	199
146	Electroactive Surfactant Designed to Mediate Electron Transfer Between CdSe Nanocrystals and Organic Semiconductors. Advanced Materials, 2003, 15, 58-61.	21.0	198
147	Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties. Journal of the American Chemical Society, 2008, 130, 3274-3275.	13.7	197
148	Surfactant-Assisted Hydrothermal Synthesis of Single phase Pyrite FeS ₂ Nanocrystals. Chemistry of Materials, 2009, 21, 2568-2570.	6.7	197
149	Size-Dependent Dissociation of Carbon Monoxide on Cobalt Nanoparticles. Journal of the American Chemical Society, 2013, 135, 2273-2278.	13.7	195
150	Germanium quantum dots: Optical properties and synthesis. Journal of Chemical Physics, 1994, 101, 1607-1615.	3.0	194
151	Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nature Materials, 2008, 7, 947-952.	27.5	193
152	Origin and Scaling of the Permanent Dipole Moment in CdSe Nanorods. Physical Review Letters, 2003, 90, 097402.	7.8	191
153	Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science, 2019, 363, 1199-1202.	12.6	190
154	Photodeposition of Pt on Colloidal CdS and CdSe/CdS Semiconductor Nanostructures. Advanced Materials, 2008, 20, 4306-4311.	21.0	188
155	Investigation of femtosecond electronic dephasing in CdSe nanocrystals using quantum-beat-suppressed photon echoes. Physical Review Letters, 1993, 70, 1014-1017.	7.8	186
156	Metallic Adhesion Layer Induced Plasmon Damping and Molecular Linker as a Nondamping Alternative. ACS Nano, 2012, 6, 5702-5709.	14.6	186
157	Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles. Journal of the American Chemical Society, 2018, 140, 4922-4928.	13.7	185
158	Shape control and applications of nanocrystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 241-257.	3.4	184
159	3D Motion of DNA-Au Nanoconjugates in Graphene Liquid Cell Electron Microscopy. Nano Letters, 2013, 13, 4556-4561.	9.1	184
160	Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17735-17740.	7.1	183
161	The Brain Activity Map. Science, 2013, 339, 1284-1285.	12.6	181
162	Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels. Nano Letters, 2007, 7, 179-182.	9.1	180

#	Article	IF	CITATIONS
163	Shape Change as an Indicator of Mechanism in the High-Pressure Structural Transformations of CdSe Nanocrystals. Physical Review Letters, 2000, 84, 923-926.	7.8	178
164	Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nature Materials, 2017, 16, 819-825.	27.5	178
165	Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. Chemistry of Materials, 2003, 15, 1242-1248.	6.7	175
166	Size-Controlled Model Co Nanoparticle Catalysts for CO ₂ Hydrogenation: Synthesis, Characterization, and Catalytic Reactions. Nano Letters, 2012, 12, 3091-3096.	9.1	175
167	A Comparison of Photocatalytic Activities of Gold Nanoparticles Following Plasmonic and Interband Excitation and a Strategy for Harnessing Interband Hot Carriers for Solution Phase Photocatalysis. ACS Central Science, 2017, 3, 482-488.	11.3	174
168	From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures. Annual Review of Physical Chemistry, 2010, 61, 369-389.	10.8	166
169	Valence-band photoemission from a quantum-dot system. Physical Review Letters, 1991, 66, 2786-2789.	7.8	164
170	Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. Langmuir, 2003, 19, 4396-4401.	3.5	163
171	Semiconductor nanocrystals for biological imaging. Current Opinion in Neurobiology, 2005, 15, 568-575.	4.2	162
172	Isolation of Discrete Nanoparticleâ^'DNA Conjugates for Plasmonic Applications. Nano Letters, 2008, 8, 1202-1206.	9.1	159
173	Structural and Electronic Study of an Amorphous MoS ₃ Hydrogenâ€Generation Catalyst on a Quantumâ€Controlled Photosensitizer. Angewandte Chemie - International Edition, 2011, 50, 10203-10207.	13.8	158
174	Revealing Bismuth Oxide Hollow Nanoparticle Formation by the Kirkendall Effect. Nano Letters, 2013, 13, 5715-5719.	9.1	157
175	SnTe Nanocrystals:  A New Example of Narrow-Gap Semiconductor Quantum Dots. Journal of the American Chemical Society, 2007, 129, 11354-11355.	13.7	156
176	Threshold for quasicontinuum absorption and reduced luminescence efficiency in CdSe nanocrystals. Journal of Chemical Physics, 1994, 101, 8455-8460.	3.0	155
177	Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory. Journal of Chemical Physics, 1998, 109, 2306-2309.	3.0	154
178	Luminescent Solar Concentration with Semiconductor Nanorods and Transfer-Printed Micro-Silicon Solar Cells. ACS Nano, 2014, 8, 44-53.	14.6	153
179	Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. ACS Nano, 2012, 6, 2078-2085.	14.6	152
180	Femtosecond Spectroscopy of Carrier Relaxation Dynamics in Type II CdSe/CdTe Tetrapod Heteronanostructures. Nano Letters, 2005, 5, 1809-1813.	9.1	148

#	Article	IF	CITATIONS
181	Nonradiative damping of molecular electronic excited states by metal surfaces. Surface Science, 1985, 158, 103-125.	1.9	146
182	Probing the Stability and Band Gaps of Cs ₂ AgInCl ₆ and Cs ₂ AgSbCl ₆ Lead-Free Double Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 3134-3143.	6.7	144
183	A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time. Cell, 2016, 165, 1507-1518.	28.9	143
184	Shape Control of Colloidal Semiconductor Nanocrystals. Journal of Cluster Science, 2002, 13, 521-532.	3.3	142
185	Directed Assembly of Discrete Gold Nanoparticle Groupings Using Branched DNA Scaffolds. Chemistry of Materials, 2005, 17, 1628-1635.	6.7	142
186	A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. Journal of Synchrotron Radiation, 2005, 12, 650-658.	2.4	139
187	Determination of the Quantum Dot Band Gap Dependence on Particle Size from Optical Absorbance and Transmission Electron Microscopy Measurements. ACS Nano, 2012, 6, 9021-9032.	14.6	138
188	Ion Exchange Synthesis of Ill–V Nanocrystals. Journal of the American Chemical Society, 2012, 134, 19977-19980.	13.7	137
189	Silicon-Based Plasmonics for On-Chip Photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 295-306.	2.9	136
190	Less is more in Medicine. Scientific American, 2001, 285, 66-73.	1.0	135
191	Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr ₃ Nanocrystal Cubes Revealed through Kinetic Studies. Journal of the American Chemical Society, 2016, 138, 12065-12068.	13.7	131
192	Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts. Nano Letters, 2009, 9, 3676-3682.	9.1	130
193	Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species. Journal of the American Chemical Society, 2015, 137, 2021-2029.	13.7	129
194	Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 5500-5505.	2.6	128
195	Electrical Transport through a Single Nanoscale Semiconductor Branch Point. Nano Letters, 2005, 5, 1519-1523.	9.1	128
196	Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles. Nano Letters, 2013, 13, 6176-6182.	9.1	128
197	Strongly Quantum Confined Colloidal Cesium Tin Iodide Perovskite Nanoplates: Lessons for Reducing Defect Density and Improving Stability. Nano Letters, 2018, 18, 2060-2066.	9.1	128
198	Comparison of Quantum Confinement Effects on the Electronic Absorption Spectra of Direct and Indirect Gap Semiconductor Nanocrystals. Physical Review Letters, 1994, 73, 3266-3269.	7.8	126

#	Article	IF	CITATIONS
199	Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration. ACS Photonics, 2015, 2, 1576-1583.	6.6	126
200	Combinatorial approaches toward patterning nanocrystals. Journal of Applied Physics, 1998, 84, 3664-3670.	2.5	125
201	Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11750-11755.	7.1	125
202	Atomic Resolution Imaging of Halide Perovskites. Nano Letters, 2016, 16, 7530-7535.	9.1	125
203	Strain-Dependent Photoluminescence Behavior of CdSe/CdS Nanocrystals with Spherical, Linear, and Branched Topologies. Nano Letters, 2009, 9, 3544-3549.	9.1	124
204	Synthesis and Isolatin of a Homodimer of Cadmium Selenide Nanocrystals. Angewandte Chemie International Edition in English, 1997, 36, 145-147.	4.4	123
205	Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using <i>in Situ</i> Liquid Phase Transmission Electron Microscopy. ACS Central Science, 2015, 1, 33-39.	11.3	121
206	Doped Nanocrystals as Plasmonic Probes of Redox Chemistry. Angewandte Chemie - International Edition, 2013, 52, 13671-13675.	13.8	120
207	The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. Nano Letters, 2017, 17, 414-420.	9.1	120
208	CdSe nanocrystals with a dipole moment in the first excited state. Journal of Chemical Physics, 1992, 97, 730-733.	3.0	119
209	Nanocrystals: Building blocks for modern materials design. Endeavour, 1997, 21, 56-60.	0.4	117
210	Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminescence quenching and photoconductivity. Synthetic Metals, 1997, 84, 545-546.	3.9	116
211	Observations of Shape-Dependent Hydrogen Uptake Trajectories from Single Nanocrystals. Journal of the American Chemical Society, 2011, 133, 13220-13223.	13.7	116
212	Sulfidation of Cadmium at the Nanoscale. ACS Nano, 2008, 2, 1452-1458.	14.6	113
213	Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate. Journal of the American Chemical Society, 2015, 137, 15567-15575.	13.7	113
214	Colloidal quantum dots. From scaling laws to biological applications. Pure and Applied Chemistry, 2000, 72, 3-9.	1.9	112
215	Size Dependence of a Temperature-Induced Solid–Solid Phase Transition in Copper(I) Sulfide. Journal of Physical Chemistry Letters, 2011, 2, 2402-2406.	4.6	111
216	Magnetic domains and surface effects in hollow maghemite nanoparticles. Physical Review B, 2009, 79, .	3.2	110

#	Article	IF	CITATIONS
217	Femtosecond M _{2,3} -Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe ₂ O ₃ . Journal of Physical Chemistry Letters, 2013, 4, 3667-3671.	4.6	110
218	Silica-Supported Cationic Gold(I) Complexes as Heterogeneous Catalysts for Regio- and Enantioselective Lactonization Reactions. Journal of the American Chemical Society, 2015, 137, 7083-7086.	13.7	110
219	NMR studies of the surface structure and dynamics of semiconductor nanocrystals. Chemical Physics Letters, 1992, 198, 431-436.	2.6	109
220	Assembled Monolayer Nanorod Heterojunctions. ACS Nano, 2011, 5, 3811-3816.	14.6	109
221	Study of Heat Transfer Dynamics from Gold Nanorods to the Environment <i>via</i> Time-Resolved Infrared Spectroscopy. ACS Nano, 2016, 10, 2144-2151.	14.6	109
222	Semiconductor Nanocrystals. MRS Bulletin, 1995, 20, 23-32.	3.5	108
223	Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods. Journal of Physical Chemistry B, 2002, 106, 2447-2452.	2.6	107
224	Reaction Regimes on the Synthesis of Hollow Particles by the Kirkendall Effect. Journal of the American Chemical Society, 2009, 131, 11326-11328.	13.7	106
225	Dielectric Core–Shell Optical Antennas for Strong Solar Absorption Enhancement. Nano Letters, 2012, 12, 3674-3681.	9.1	106
226	Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. ACS Nano, 2018, 12, 11529-11540.	14.6	104
227	Electric field modulation studies of optical absorption in CdSe nanocrystals: Dipolar character of the excited state. Journal of Chemical Physics, 1994, 101, 7122-7138.	3.0	103
228	Millisecond Kinetics of Nanocrystal Cation Exchange Using Microfluidic X-ray Absorption Spectroscopyâ€. Journal of Physical Chemistry A, 2007, 111, 12210-12215.	2.5	103
229	Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Science Advances, 2019, 5, eaav8141.	10.3	103
230	Critical differences in 3D atomic structure of individual ligand-protected nanocrystals in solution. Science, 2020, 368, 60-67.	12.6	103
231	Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures. Advanced Materials, 2015, 27, 5830-5837.	21.0	98
232	Resonance Raman scattering and optical absorption studies of CdSe microclusters at high pressure. Journal of Chemical Physics, 1988, 89, 5979-5982.	3.0	97
233	Dendritic Assembly of Gold Nanoparticles during Fuel-Forming Electrocatalysis. Journal of the American Chemical Society, 2014, 136, 7237-7240.	13.7	96
234	Lithographically directed self-assembly of nanostructures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3409.	1.6	92

#	Article	IF	CITATIONS
235	Near-field manipulation of spectroscopic selection rules on the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8016-8019.	7.1	92
236	Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. Nano Letters, 2015, 15, 4564-4570.	9.1	91
237	Enzymatic Ligation Creates Discrete Multinanoparticle Building Blocks for Self-Assembly. Journal of the American Chemical Society, 2008, 130, 9598-9605.	13.7	90
238	Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. Journal of the American Chemical Society, 2014, 136, 5121-5131.	13.7	90
239	Formation Mechanism and Properties of CdS-Ag ₂ S Nanorod Superlattices. ACS Nano, 2008, 2, 627-636.	14.6	88
240	Synthesis of Colloidal Cobalt Nanoparticles with Controlled Size and Shapes. Topics in Catalysis, 2002, 19, 145-148.	2.8	86
241	Roadmap on optical energy conversion. Journal of Optics (United Kingdom), 2016, 18, 073004.	2.2	85
242	Nanocrystal Templating of Silica Mesopores with Tunable Pore Sizes. Nano Letters, 2002, 2, 907-910.	9.1	84
243	Size-Dependent Polar Ordering in Colloidal GeTe Nanocrystals. Nano Letters, 2011, 11, 1147-1152.	9.1	84
244	Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13369-13373.	7.1	84
245	Carbon Dioxide Dimer Radical Anion as Surface Intermediate of Photoinduced CO ₂ Reduction at Aqueous Cu and CdSe Nanoparticle Catalysts by Rapid-Scan FT-IR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 4363-4371.	13.7	84
246	Electronic Structure of Cobalt Nanocrystals Suspended in Liquid. Nano Letters, 2007, 7, 1919-1922.	9.1	83
247	NMR study of InP quantum dots: Surface structure and size effects. Journal of Chemical Physics, 1999, 110, 8861-8864.	3.0	82
248	Quantum dot-based cell motility assay. Differentiation, 2003, 71, 542-548.	1.9	82
249	Tracking Nanoparticle Diffusion and Interaction during Self-Assembly in a Liquid Cell. Nano Letters, 2017, 17, 15-20.	9.1	82
250	Controlled Isotropic and Anisotropic Shell Growth in β-NaLnF ₄ Nanocrystals Induced by Precursor Injection Rate. Journal of the American Chemical Society, 2017, 139, 12325-12332.	13.7	80
251	Sub-20 nm Core–Shell–Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer. Journal of the American Chemical Society, 2019, 141, 16997-17005.	13.7	80
252	Structural Disorder in Colloidal InAs and CdSe Nanocrystals Observed by X-Ray Absorption Near-Edge Spectroscopy. Physical Review Letters, 1999, 83, 3474-3477.	7.8	78

#	Article	IF	CITATIONS
253	Preparation of Asymmetric Nanostructures through Site Selective Modification of Tetrapods. Nano Letters, 2004, 4, 2397-2401.	9.1	78
254	Self-Assembly of Magnetic Nanoparticles in Evaporating Solution. Journal of the American Chemical Society, 2011, 133, 838-848.	13.7	78
255	Phase-Selective Cation-Exchange Chemistry in Sulfide Nanowire Systems. Journal of the American Chemical Society, 2014, 136, 17430-17433.	13.7	78
256	Characterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co ₃ O ₄). Journal of Physical Chemistry C, 2014, 118, 22774-22784.	3.1	78
257	Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals. Physical Review B, 1997, 55, 7059-7067.	3.2	77
258	Size-Dependent Assemblies of Nanoparticle Mixtures in Thin Films. Journal of the American Chemical Society, 2013, 135, 1680-1683.	13.7	77
259	Synthesis of Pt ₃ Y and Other Early–Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent. Journal of the American Chemical Society, 2017, 139, 5672-5675.	13.7	77
260	Title is missing!. Catalysis Letters, 2002, 81, 137-140.	2.6	76
261	Controlled Assembly of Hybrid Bulkâ`'Heterojunction Solar Cells by Sequential Depositionâ€. Journal of Physical Chemistry B, 2006, 110, 25543-25546.	2.6	76
262	The chain of chirality transfer in tellurium nanocrystals. Science, 2021, 372, 729-733.	12.6	76
263	Probing the Conformational Distributions of Subpersistence Length DNA. Biophysical Journal, 2009, 97, 1408-1417.	0.5	75
264	The role of organic ligand shell structures in colloidal nanocrystal synthesis. , 2022, 1, 127-137.		75
265	Dealloying of Cobalt from CuCo Nanoparticles under Syngas Exposure. Journal of Physical Chemistry C, 2013, 117, 6259-6266.	3.1	74
266	Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors. ACS Photonics, 2016, 3, 1217-1222.	6.6	73
267	IR Spectroscopic Observation of Molecular Transport through Pt@CoO Yolkâ^'Shell Nanostructures. Journal of the American Chemical Society, 2007, 129, 9510-9513.	13.7	72
268	Enhancing Quantum Yield via Local Symmetry Distortion in Lanthanide-Based Upconverting Nanoparticles. ACS Photonics, 2016, 3, 1523-1530.	6.6	72
269	Threshold Size for Ambient Metastability of Rocksalt CdSe Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 3759-3762.	2.6	71
270	End-to-End Alignment of Nanorods in Thin Films. Nano Letters, 2013, 13, 4908-4913.	9.1	71

#	Article	IF	CITATIONS
271	Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS ₂) Nanocrystals. Chemistry of Materials, 2013, 25, 1615-1620.	6.7	70
272	Superresolution fluorescence mapping of single-nanoparticle catalysts reveals spatiotemporal variations in surface reactivity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8959-8964.	7.1	69
273	Improving Quantum Yield of Upconverting Nanoparticles in Aqueous Media via Emission Sensitization. Nano Letters, 2018, 18, 2689-2695.	9.1	69
274	Exchange interaction in InAs nanocrystal quantum dots. Superlattices and Microstructures, 1997, 22, 559-568.	3.1	68
275	Solution-State NMR Studies of the Surface Structure and Dynamics of Semiconductor Nanocrystals. Journal of Physical Chemistry B, 1998, 102, 10117-10128.	2.6	67
276	Small Alkaline-Earth-based Core/Shell Nanoparticles for Efficient Upconversion. Nano Letters, 2019, 19, 3878-3885.	9.1	67
277	Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ionâ€Exchange Synthesis. Angewandte Chemie - International Edition, 2012, 51, 2387-2390.	13.8	66
278	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 4534-4540.	9.1	66
279	Thermodynamic Investigation of Increased Luminescence in Indium Phosphide Quantum Dots by Treatment with Metal Halide Salts. Journal of the American Chemical Society, 2020, 142, 18897-18906.	13.7	66
280	Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 4428-4437.	13.7	65
281	Probing Redox Photocatalysis of Trapped Electrons and Holes on Single Sb-doped Titania Nanorod Surfaces. Journal of the American Chemical Society, 2012, 134, 3946-3949.	13.7	64
282	Luminescence Studies of Individual Quantum Dot Photocatalysts. Journal of the American Chemical Society, 2013, 135, 13049-13053.	13.7	64
283	Unraveling Kinetically-Driven Mechanisms of Gold Nanocrystal Shape Transformations Using Graphene Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 5731-5737.	9.1	64
284	Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2836-2841.	7.1	63
285	Nanoscience in the era of global science and global change—Cooperative, quantitative, and focused on benefit to humanity. Nano Research, 2016, 9, 1-2.	10.4	62
286	Mechanical and electrical properties of CdTe tetrapods studied by atomic force microscopy. Journal of Chemical Physics, 2007, 127, 184704.	3.0	61
287	Modular Inorganic Nanocomposites by Conversion of Nanocrystal Superlattices. Angewandte Chemie - International Edition, 2010, 49, 2878-2882.	13.8	61
288	Raman studies on C60 at high pressures and low temperatures. Chemical Physics Letters, 1992, 188, 163-167.	2.6	60

#	Article	IF	CITATIONS
289	Manipulating the Transition Dipole Moment of CsPbBr ₃ Perovskite Nanocrystals for Superior Optical Properties. Nano Letters, 2019, 19, 2489-2496.	9.1	60
290	Modular Synthesis of a Dual Metal–Dual Semiconductor Nanoâ€Heterostructure. Angewandte Chemie - International Edition, 2015, 54, 7007-7011.	13.8	59
291	Optical Rotation Reversal in the Optical Response of Chiral Plasmonic Nanosystems: The Role of Plasmon Hybridization. ACS Photonics, 2015, 2, 1253-1259.	6.6	59
292	Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport. Nature Communications, 2016, 7, 11924.	12.8	59
293	Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature, 2020, 577, 359-363.	27.8	59
294	Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites. Nano Letters, 2013, 13, 3915-3922.	9.1	58
295	Enhanced Photon Collection in Luminescent Solar Concentrators with Distributed Bragg Reflectors. ACS Photonics, 2016, 3, 278-285.	6.6	58
296	Excitation Intensity Dependence of Photoluminescence Blinking in CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 12106-12113.	3.1	58
297	Luminescent nanocrystal stress gauge. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21306-21310.	7.1	57
298	Spatially Indirect Emission in a Luminescent Nanocrystal Molecule. Nano Letters, 2011, 11, 2358-2362.	9.1	57
299	Tailoring Morphology of Cu–Ag Nanocrescents and Core–Shell Nanocrystals Guided by a Thermodynamic Model. Journal of the American Chemical Society, 2018, 140, 8569-8577.	13.7	57
300	Factors and Dynamics of Cu Nanocrystal Reconstruction under CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 7744-7749.	5.1	56
301	Lattice reorganization in electronically excited semiconductor clusters. Journal of Chemical Physics, 1990, 92, 3232-3233.	3.0	55
302	Critical Size for Fracture during Solidâ~'Solid Phase Transformations. Nano Letters, 2004, 4, 943-946.	9.1	55
303	Molecular Oxygen Induced in-Gap States in PbS Quantum Dots. ACS Nano, 2015, 9, 10445-10452.	14.6	55
304	Bright, Mechanosensitive Upconversion with Cubic-Phase Heteroepitaxial Core–Shell Nanoparticles. Nano Letters, 2018, 18, 4454-4459.	9.1	55
305	Graphene Veils and Sandwiches. Nano Letters, 2011, 11, 3290-3294.	9.1	54
306	Metastability in Pressure-Induced Structural Transformations of CdSe/ZnS Core/Shell Nanocrystals. Nano Letters, 2013, 13, 1367-1372.	9.1	54

#	Article	IF	CITATIONS
307	DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17308-17313.	7.1	53
308	Distance Dependence of Electronic Energy Transfer to Semiconductor Surfaces:n3I€*Pyrazine/GaAs(110). Physical Review Letters, 1983, 50, 1092-1094.	7.8	50
309	Exciton Dynamics in CdSâ^'Ag ₂ S Nanorods with Tunable Composition Probed by Ultrafast Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 5879-5885.	3.1	50
310	Charge Percolation Pathways Guided by Defects in Quantum Dot Solids. Nano Letters, 2015, 15, 3249-3253.	9.1	50
311	Controlled Synthesis and Size-Dependent Polarization Domain Structure of Colloidal Germanium Telluride Nanocrystals. Journal of the American Chemical Society, 2011, 133, 2044-2047.	13.7	49
312	Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition. Physical Review Letters, 2013, 111, 037401.	7.8	48
313	Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8210-E8218.	7.1	48
314	Size dependence of the pressure-induced γ to α structural phase transition in iron oxide nanocrystals. Nanotechnology, 2005, 16, 2813-2818.	2.6	47
315	Triangular Elastomeric Stamps for Optical Applications: Nearâ€Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing. Advanced Functional Materials, 2012, 22, 2927-2938.	14.9	47
316	Activation of Tungsten Oxide for Propane Dehydrogenation and Its High Catalytic Activity and Selectivity. Catalysis Letters, 2017, 147, 622-632.	2.6	47
317	Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. Journal of Chemical Physics, 2004, 120, 1149-1152.	3.0	45
318	Broadband Sensitization of Lanthanide Emission with Indium Phosphide Quantum Dots for Visible to Near-Infrared Downshifting. Journal of the American Chemical Society, 2018, 140, 9120-9126.	13.7	45
319	Probing the Interaction of Single Nanocrystals with Inorganic Capping Ligands: Time-Resolved Fluorescence from CdSe–CdS Quantum Dots Capped with Chalcogenidometalates. Journal of the American Chemical Society, 2012, 134, 18366-18373.	13.7	44
320	Inorganic Micelles as Efficient and Recyclable Micellar Catalysts. Nano Letters, 2014, 14, 379-383.	9.1	44
321	Temperature-Dependent Hole Transfer from Photoexcited Quantum Dots to Molecular Species: Evidence for Trap-Mediated Transfer. ACS Nano, 2017, 11, 8346-8355.	14.6	44
322	AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles. Jacs Au, 2021, 1, 316-327.	7.9	44
323	Birth of a Nanoscience Building Block. ACS Nano, 2008, 2, 1514-1516.	14.6	43
324	Reactivity of Au nanoparticles supported over SiO2 and TiO2 studied by ambient pressure photoelectron spectroscopy. Catalysis Today, 2009, 143, 158-166.	4.4	43

#	Article	IF	CITATIONS
325	Selective Placement of Faceted Metal Tips on Semiconductor Nanorods. Angewandte Chemie - International Edition, 2013, 52, 980-982.	13.8	43
326	Symmetry Breaking in Tetrahedral Chiral Plasmonic Nanoparticle Assemblies. ACS Photonics, 2014, 1, 1189-1196.	6.6	43
327	Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached PbTe Nanocrystal Pairs: Toward Design Rules for Oriented Attachment. ACS Nano, 2018, 12, 3178-3189.	14.6	43
328	Anisotropic Formation and Distribution of Stacking Faults in Il–VI Semiconductor Nanorods. Nano Letters, 2013, 13, 106-110.	9.1	42
329	Elucidating the Weakly Reversible Cs–Pb–Br Perovskite Nanocrystal Reaction Network with High-Throughput Maps and Transformations. Journal of the American Chemical Society, 2020, 142, 11915-11926.	13.7	42
330	Electrical Contacts to Individual Colloidal Semiconductor Nanorods. Nano Letters, 2008, 8, 1936-1939.	9.1	41
331	Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers. Journal of the American Chemical Society, 2012, 134, 13200-13203.	13.7	41
332	PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport. ACS Nano, 2014, 8, 2532-2540.	14.6	41
333	Circular Dichroism in Off-Resonantly Coupled Plasmonic Nanosystems. Nano Letters, 2015, 15, 8336-8341.	9.1	40
334	Second Harmonic Generation and Confined Acoustic Phonons in Highly Excited Semiconductor Nanocrystalsâ€. Journal of Physical Chemistry B, 2006, 110, 19884-19890.	2.6	39
335	Real-Time Observation of Water-Soluble Mineral Precipitation in Aqueous Solution by In Situ High-Resolution Electron Microscopy. ACS Nano, 2016, 10, 88-92.	14.6	38
336	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 6427-6433.	9.1	38
337	Charge Carrier Dynamics of Photoexcited Co ₃ O ₄ in Methanol: Extending High Harmonic Transient Absorption Spectroscopy to Liquid Environments. Nano Letters, 2014, 14, 5883-5890.	9.1	37
338	Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
339	Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots. ACS Nano, 2021, 15, 1407-1420.	14.6	37
340	Three-dimensional structural dynamics and fluctuations of DNA-nanogold conjugates by individual-particle electron tomography. Nature Communications, 2016, 7, 11083.	12.8	36
341	Resilient Pathways to Atomic Attachment of Quantum Dot Dimers and Artificial Solids from Faceted CdSe Quantum Dot Building Blocks. ACS Nano, 2019, 13, 12322-12344.	14.6	36
342	Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nature Nanotechnology, 2019, 14, 420-425.	31.5	36

#	Article	IF	CITATIONS
343	Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 437, 379-387.	5.6	35
344	TiO2 nanoparticles as a soft X-ray molecular probe. Chemical Communications, 2008, , 2471.	4.1	35
345	Design Criteria for Micro-Optical Tandem Luminescent Solar Concentrators. IEEE Journal of Photovoltaics, 2018, 8, 1560-1567.	2.5	35
346	Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy. ACS Nano, 2020, 14, 10239-10250.	14.6	35
347	Postsynthetic Doping Control of Nanocrystal Thin Films: Balancing Space Charge to Improve Photovoltaic Efficiency. Chemistry of Materials, 2014, 26, 153-162.	6.7	34
348	Unsaturated Ligands Seed an Order to Disorder Transition in Mixed Ligand Shells of CdSe/CdS Quantum Dots. ACS Nano, 2019, 13, 13784-13796.	14.6	34
349	Size dependence of the solid-solid phase transition in CdSe nanocrystals. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1993, 26, 56-58.	1.0	33
350	Influence of three-dimensional nanoparticle branching on the Young's modulus of nanocomposites: Effect of interface orientation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6533-6538.	7.1	33
351	Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction. Nature Communications, 2021, 12, 2663.	12.8	33
352	Nonmonotonic Size Dependence in the Hole Mobility of Methoxide-Stabilized PbSe Quantum Dot Solids. ACS Nano, 2013, 7, 6774-6781.	14.6	32
353	Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors. Nano Letters, 2015, 15, 4657-4663.	9.1	32
354	Characterizing Photon Reabsorption in Quantum Dot-Polymer Composites for Use as Displacement Sensors. ACS Nano, 2017, 11, 2075-2084.	14.6	32
355	Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots. Nano Letters, 2017, 17, 1629-1636.	9.1	32
356	Bright Infraredâ€toâ€Ultraviolet/Visible Upconversion in Small Alkaline Earthâ€Based Nanoparticles with Biocompatible CaF ₂ Shells. Angewandte Chemie - International Edition, 2020, 59, 21603-21612.	13.8	31
357	Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching. Journal of Visualized Experiments, 2018, , .	0.3	30
358	Colloidal Synthesis Path to 2D Crystalline Quantum Dot Superlattices. ACS Nano, 2021, 15, 2251-2262.	14.6	30
359	Dynamics of exciton localization in CdS/HgS quantum-dot quantum wells. Physical Review B, 1999, 59, 4973-4979.	3.2	29
360	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS Nano, 2021, 15, 6243-6256.	14.6	29

#	Article	IF	CITATIONS
361	Multielectron Ionization of CdSe Quantum Dots in Intense Femtosecond Ultraviolet Light. Physical Review Letters, 2004, 92, 127406.	7.8	28
362	Hundreds-fold Sensitivity Enhancement of Photothermal Microscopy in Near-Critical Xenon. Journal of Physical Chemistry Letters, 2016, 7, 2524-2529.	4.6	28
363	Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers. Materials Today Communications, 2015, 2, e33-e37.	1.9	27
364	Observation of pressure-induced direct-to-indirect band gap transition in InP nanocrystals. Journal of Chemical Physics, 2000, 113, 2016-2020.	3.0	26
365	Synthesis and characterization of hyperbranched mesoporous silica SBA-15. Chemical Communications, 2003, , 314.	4.1	26
366	Semiconductor Nanocrystal Quantum Dots on Single Crystal Semiconductor Substrates:Â High Resolution Transmission Electron Microscopy. Nano Letters, 2005, 5, 969-973.	9.1	26
367	Photoexcited Small Polaron Formation in Goethite (α-FeOOH) Nanorods Probed by Transient Extreme Ultraviolet Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 4120-4124.	4.6	26
368	Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Research, 2020, 13, 1453-1458.	10.4	26
369	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	13.7	26
370	Single-Particle Studies Reveal a Nanoscale Mechanism for Elastic, Bright, and Repeatable ZnS:Mn Mechanoluminescence in a Low-Pressure Regime. ACS Nano, 2021, 15, 4115-4133.	14.6	25
371	Integrated Semiconductor Nanocrystal and Epitaxical Nanostructure Systems:Â Structural and Optical Behavior. Nano Letters, 2005, 5, 479-482.	9.1	24
372	Real-Time Visualization of Nanocrystal Solid–Solid Transformation Pathways. Nano Letters, 2014, 14, 1995-1999.	9.1	24
373	Hybrid Lithographic and DNA-Directed Assembly of a Configurable Plasmonic Metamaterial That Exhibits Electromagnetically Induced Transparency. Nano Letters, 2018, 18, 859-864.	9.1	24
374	29Si high resolution solid state nuclear magnetic resonance spectroscopy of porous silicon. Journal of Non-Crystalline Solids, 1996, 202, 68-76.	3.1	23
375	Soft x-ray imaging and spectroscopy of single nanocrystals. Journal of Chemical Physics, 2002, 116, 6322-6328.	3.0	22
376	Surface Structure of CdSe Nanorods Revealed by Combined X-ray Absorption Fine Structure Measurements and ab Initio Calculations. Journal of Physical Chemistry C, 2007, 111, 75-79.	3.1	22
377	In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation. Journal of Physical Chemistry Letters, 2015, 6, 605-611.	4.6	22
378	Mechanisms of Local Stress Sensing in Multifunctional Polymer Films Using Fluorescent Tetrapod Nanocrystals. Nano Letters, 2016, 16, 5060-5067.	9.1	22

#	Article	IF	CITATIONS
379	Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites. Chemistry of Materials, 2016, 28, 2540-2549.	6.7	22
380	Uncovering the Role of Hole Traps in Promoting Hole Transfer from Multiexcitonic Quantum Dots to Molecular Acceptors. ACS Nano, 2021, 15, 2281-2291.	14.6	21
381	CdSe Nanocrystal Rods/Poly(3-hexylthiophene) Composite Photovoltaic Devices. Advanced Materials, 1999, 11, 923-927.	21.0	21
382	Precise Colloidal Plasmonic Photocatalysts Constructed by Multistep Photodepositions. Nano Letters, 2020, 20, 8661-8667.	9.1	20
383	Dopant Mediated Assembly of Cu ₂ ZnSnS ₄ Nanorods into Atomically Coupled 2D Sheets in Solution. Nano Letters, 2017, 17, 3421-3428.	9.1	19
384	Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy. MRS Bulletin, 2020, 45, 713-726.	3.5	19
385	Dynamic lattice distortions driven by surface trapping in semiconductor nanocrystals. Nature Communications, 2021, 12, 1860.	12.8	19
386	Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 599-604.	2.5	18
387	The Underlying Chemical Mechanism of Selective Chemical Etching in CsPbBr ₃ Nanocrystals for Reliably Accessing Near-Unity Emitters. ACS Nano, 2019, 13, 11825-11833.	14.6	18
388	Sub-Bandgap Photoinduced Transient Absorption Features in CdSe Nanostructures: The Role of Trapped Holes. Journal of Physical Chemistry C, 2020, 124, 17372-17378.	3.1	18
389	Perovskite-Carbon Nanotube Light-Emitting Fibers. Nano Letters, 2020, 20, 3178-3184.	9.1	18
390	Structural transformations and metastability in semiconductor nanocrystals. Phase Transitions, 1999, 68, 1-25.	1.3	17
391	Measuring Cell Motility Using Quantum Dot Probes. , 2007, 374, 125-132.		17
392	Pseudoelasticity at Large Strains in Au Nanocrystals. Physical Review Letters, 2018, 121, 056102.	7.8	17
393	Wurtzite to Rocksalt Phase Transformation of Cadmium Selenide Nanocrystals via Laser-Induced Shock Waves: Transition from Single to Multiple Nucleation. Physical Review Letters, 2009, 103, 125701.	7.8	16
394	Virtual Issue on Metal-Halide Perovskite Nanocrystals—A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	6.7	16
395	Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. Nano Letters, 2019, 19, 4804-4810.	9.1	16
396	Self-Limiting Shell Formation in Cu@Ag Core–Shell Nanocrystals during Galvanic Replacement. Journal of Physical Chemistry Letters, 2020, 11, 5318-5323.	4.6	16

#	Article	IF	CITATIONS
397	Structure of chemically synthesized nanophase GaAs studied by nuclear magnetic resonance and xâ€ray diffraction. Journal of Chemical Physics, 1995, 103, 4834-4840.	3.0	15
398	Protein-Nanocrystal Conjugates Support a Single Filament Polymerization Model in R1 Plasmid Segregation. Journal of Biological Chemistry, 2008, 283, 28081-28086.	3.4	15
399	A National Network of Neurotechnology Centers for the BRAIN Initiative. Neuron, 2015, 88, 445-448.	8.1	15
400	Multiscale Characterization of the Influence of the Organic–Inorganic Interface on the Dielectric Breakdown of Nanocomposites. ACS Nano, 2022, 16, 6744-6754.	14.6	15
401	Electron (hole) paramagnetic resonance of spherical CdSe nanocrystals. Journal of Chemical Physics, 2002, 117, 2909-2913.	3.0	14
402	Nano Letters After Two Years. Nano Letters, 2003, 3, 1-1.	9.1	14
403	Metallic Nanoparticles Used to Estimate the Structural Integrity of DNA Motifs. Biophysical Journal, 2008, 95, 3340-3348.	0.5	14
404	Understanding the Bias Introduced in Quantum Dot Blinking Using Change Point Analysis. Journal of Physical Chemistry C, 2016, 120, 29484-29490.	3.1	14
405	Translatable Research Group-Based Undergraduate Research Program for Lower-Division Students. Journal of Chemical Education, 2019, 96, 1881-1890.	2.3	14
406	Quantum Dot-Based Cell Motility Assay. Science Signaling, 2005, 2005, pl5-pl5.	3.6	13
407	Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods. Ultramicroscopy, 2013, 134, 207-213.	1.9	13
408	Synthesis, physics, and applications of ferroelectric nanomaterials. MRS Communications, 2015, 5, 27-44.	1.8	13
409	Outdoor performance of a tandem InGaP/Si photovoltaic luminescent solar concentrator. Solar Energy Materials and Solar Cells, 2021, 223, 110945.	6.2	13
410	Redox Mediated Control of Electrochemical Potential in Liquid Cell Electron Microscopy. Journal of the American Chemical Society, 2021, 143, 12082-12089.	13.7	13
411	Modular Synthesis of a Dual Metal–Dual Semiconductor Nanoâ€Heterostructure. Angewandte Chemie, 2015, 127, 7113-7117.	2.0	12
412	Nanocrystals as Model Systems for Pressure-Induced Structural Phase Transitions. Reviews in Mineralogy and Geochemistry, 2001, 44, 59-72.	4.8	11
413	Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis. Journal of the American Chemical Society, 2021, 143, 11703-11713.	13.7	11
414	Scanned probe investigations of chemically derived nanostructures. Nanotechnology, 1996, 7, 397-400.	2.6	10

6

#	Article	IF	CITATIONS
415	Studies of the dynamics of biological macromolecules using Au nanoparticle–DNA artificial molecules. Faraday Discussions, 2014, 175, 203-214.	3.2	10
416	DNA-Based Assembly of Gold Nanocrystals. Angewandte Chemie - International Edition, 1999, 38, 1808-1812.	13.8	10
417	Engineering gold-platinum core-shell nanoparticles by self-limitation in solution. Communications Chemistry, 2022, 5, .	4.5	10
418	Nano Letters after One Year. Nano Letters, 2002, 2, 1-1.	9.1	9
419	Hexameric Octahedral Clusters of PbSe Nanocrystals Grown from Amorphous Lead(II) Carboxylate Nanoparticles. Chemistry of Materials, 2013, 25, 2544-2548.	6.7	9
420	Toward plasmonics-enabled spatiotemporal activity patterns in three-dimensional culture models. Systems Biomedicine (Austin, Tex), 2013, 1, 12-19.	0.7	9
421	Ligand Dissociation Mediated Charge Transfer Observed at Colloidal W ₁₈ O ₄₉ Nanoparticle Interfaces. Langmuir, 2014, 30, 2325-2328.	3.5	9
422	From Molecules to Materials: Current Trends and Future Directions. Advanced Materials, 1998, 10, 1297-1336.	21.0	9
423	Real time imaging of two-dimensional iron oxide spherulite nanostructure formation. Nano Research, 2019, 12, 2889-2893.	10.4	8
424	Application of Dislocation Theory to Minimize Defects in Artificial Solids Built with Nanocrystal Building Blocks. Accounts of Chemical Research, 2021, 54, 1419-1429.	15.6	8
425	Using Machine Learning to Predict and Understand Complex Selfâ€Assembly Behaviors of a Multicomponent Nanocomposite. Advanced Materials, 2022, 34, .	21.0	8
426	Welcome to Nano Letters. Nano Letters, 2001, 1, 1-1.	9.1	7
427	Direct measurement of the built-in potential in a nanoscale heterostructure. Physical Review B, 2010, 82, .	3.2	7
428	Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals. Journal of Visualized Experiments, 2013, , e50731.	0.3	7
429	Nanothermodynamics:  A Personal Perspective by Terrell Hill. Nano Letters, 2001, 1, 109-109.	9.1	6
430	Cation Exchange Reactions in Ionic Nanocrystals ChemInform, 2005, 36, no.	0.0	6
431	Correlation Analysis of TEM Images of Nanocrystal Molecules. Langmuir, 2008, 24, 10084-10088.	3.5	6

432 Micro-optical Tandem Luminescent Solar Concentrator. , 2017, , .

25

#	Article	IF	CITATIONS
433	Real-time observation of dynamic structure of liquid-vapor interface at nanometer resolution in electron irradiated sodium chloride crystals. Scientific Reports, 2020, 10, 8596.	3.3	6
434	Characterization of Carrier Cooling Bottleneck in Silicon Nanoparticles by Extreme Ultraviolet (XUV) Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 9319-9329.	3.1	6
435	Single Particle Cathodoluminescence Spectroscopy with Sub-20 nm, Electron-Stable Phosphors. ACS Photonics, 2021, 8, 1539-1547.	6.6	5
436	Trade-offs between Translational and Orientational Order in 2D Superlattices of Polygonal Nanocrystals with Differing Edge Count. Nano Letters, 2022, 22, 389-395.	9.1	5
437	<title>Ultrahigh-resolution multicolor colocalization of single fluorescent nanocrystals</title> ., 2001, 4258,.		4
438	Bright Infraredâ€ŧoâ€Ultraviolet/Visible Upconversion in Small Alkaline Earthâ€Based Nanoparticles with Biocompatible CaF 2 Shells. Angewandte Chemie, 2020, 132, 21787-21796.	2.0	4
439	In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape. Nano Letters, 2021, 21, 628-633.	9.1	4
440	Research Group-Led Undergraduate Research Program: Analyzing and Improving a Versatile Springboard for First-Year Undergraduates. Journal of Chemical Education, 2022, 99, 799-809.	2.3	4
441	Spiers Memorial Lecture : New tools for observing the growth and assembly of colloidal inorganic nanocrystals. Faraday Discussions, 2015, 181, 15-18.	3.2	3
442	Nanocrystals as Model Systems for Studying the Interplay Between Crystallization and Chirality. Israel Journal of Chemistry, 0, , .	2.3	3
443	Recent advances in the study of colloidal nanocrystals enabled by in situ liquid-phase transmission electron microscopy. MRS Bulletin, 2022, 47, 305-313.	3.5	3
444	Classifying handedness in chiral nanomaterials using label error robust deep learning. Npj Computational Materials, 2022, 8, .	8.7	3
445	Quantum Dots. , 0, , 4-49.		2
446	Quantum Dots: Inorganic Fluorescent Probes for Single-Molecule Tracking Experiments in Live Cells. , 0, , 67-96.		2
447	Accounting for localized defects in the optoelectronic design of thin-film solar cells. , 2012, , .		2
448	High Resolution Imaging in the Graphene Liquid Cell. , 0, , 393-407.		2
449	Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. , 2001, 2, 261.		2
450	Modular small-molecule directed nanoparticle assembly. , 2010, , .		1

450 Modular small-molecule directed nanoparticle assembly. , 2010, , .

#	Article	IF	CITATIONS
451	Microfabricated liquid chamber utilizing solvent-drying for in-situ TEM imaging of nanoparticle self-assembly. , 2015, , .		1
452	Nanoscience — Potential and Threats. Molecular Frontiers Journal, 2017, 01, 50-65.	1.1	1
453	In Situ TEM Etching of Gold Nanocrystals: Elucidating the Shape Transformation Mechanisms and Chemistry of the Graphene Liquid Cell. Microscopy and Microanalysis, 2019, 25, 1412-1413.	0.4	1
454	Observation of an Orientational Glass in a Superlattice of Elliptically-Faceted CdSe Nanocrystals. ACS Nano, 2022, 16, 9339-9347.	14.6	1
455	Designed for Charge Transfer: Complexes of CdSe Nanocrystals and Oligothiophenes. Materials Research Society Symposia Proceedings, 2002, 725, 1.	0.1	0
456	Mechanisms of Controlled Growth Of Metallic Nanocrystals. Materials Research Society Symposia Proceedings, 2002, 721, 1.	0.1	0
457	Synthesis Insertion of Gold Nanoparticles into Mesoporous Silica ChemInform, 2003, 34, no.	0.0	0
458	Correcting the Record. Nano Letters, 2003, 3, 111-111.	9.1	0
459	Integration of nanocrystal quantum dots with crystalline semiconductor substrates: Structure, Stability, and Optical response. Materials Research Society Symposia Proceedings, 2004, 854, U4.7.1.	0.1	0
460	Less is more in Medicine. Scientific American Reports, 2007, 17, 72-79.	0.0	0
461	Electrical studies of individual colloidal inorganic nanocrystals. , 2010, , .		0
462	Accounting for localized defects in the optoelectronic design of thin-film solar cells. , 2013, , .		0
463	Quantum Rods: Cadmium Selenide Anisotropy. , 0, , 4116-4125.		0
464	Dynamics and Removal Pathway of Edge Dislocations in Imperfectly Attached Nanocrystal Pairs; Towards Design Rules for Oriented Attachment. Microscopy and Microanalysis, 2018, 24, 1656-1657.	0.4	0
465	Using Graphene Liquid Cell Electron Microscopy to Elucidate Nanocrystal Etching Mechanisms. Microscopy and Microanalysis, 2018, 24, 246-247.	0.4	0
466	Luminescent Solar Concentrator Tandem-on-Silicon with above 700mV Passivated Contact Silicon Bottom Cell. , 2019, , .		0
467	Cadmium Selenide Quantum Rods. , 2008, , 487-497.		0
468	Nanoscience $\hat{a} \in$ "Potential and Threats. , 2019, , 9-46.		0

#	Article	IF	CITATIONS
469	A Core-Shell-Shell Nanoparticle Architecture Towards Bright Upconversion and Improved Förster Resonant Energy Transfer. , 2020, , .		0
470	How does solar power work?. Scientific American, 2009, 300, 108.	1.0	0