
Yusuke Hirabayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072488/publications.pdf Version: 2024-02-01

VUSUKE HIDABAVASHI

#	Article	IF	CITATIONS
1	Targeting of a mitochondrial protein using gold fiducials for high resolution in-situ cryo-electron tomography. Biophysical Journal, 2022, 121, 547a.	0.5	0
2	Compartment-specific tuning of dendritic feature selectivity by intracellular Ca ²⁺ release. Science, 2022, 375, eabm1670.	12.6	41
3	Endoplasmic Reticulum–Mitochondria Contact Sites—Emerging Intracellular Signaling Hubs. Frontiers in Cell and Developmental Biology, 2021, 9, 653828.	3.7	30
4	Characterization of ER-mitochondria contact sites using cryo-CLEM. Microscopy and Microanalysis, 2021, 27, 1712-1713.	0.4	0
5	New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2021, 97, 559-572.	3.8	3
6	Diverse gene regulatory mechanisms mediated by Polycomb group proteins during neural development. Current Opinion in Neurobiology, 2019, 59, 164-173.	4.2	15
7	Pleiotropic Mitochondria: The Influence of Mitochondria on Neuronal Development and Disease. Journal of Neuroscience, 2019, 39, 8200-8208.	3.6	124
8	Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Current Opinion in Physiology, 2018, 3, 82-93.	1.8	85
9	Optogenetic Control of Endoplasmic Reticulum–Mitochondria Tethering. ACS Synthetic Biology, 2018, 7, 2-9.	3.8	26
10	Correlated Light-Serial Scanning Electron Microscopy (CoLSSEM) for ultrastructural visualization of single neurons in vivo. Scientific Reports, 2018, 8, 14491.	3.3	21
11	Ubiquitination-Independent Repression of PRC1 Targets during Neuronal Fate Restriction in the Developing Mouse Neocortex. Developmental Cell, 2018, 47, 758-772.e5.	7.0	67
12	Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly. Science, 2017, 356, 411-414.	12.6	124
13	ER-mitochondria tethering by PDZD8 regulates Ca ²⁺ dynamics in mammalian neurons. Science, 2017, 358, 623-630.	12.6	337
14	Organelle-Specific Sensors for Monitoring Ca2+ Dynamics in Neurons. Frontiers in Synaptic Neuroscience, 2016, 8, 29.	2.5	16
15	LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons. PLoS Biology, 2016, 14, e1002516.	5.6	132
16	Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nature Neuroscience, 2015, 18, 657-665.	14.8	266
17	Upâ€regulation of <scp>HP</scp> 1γ expression during neuronal maturation promotes axonal and dendritic development in mouse embryonic neocortex. Genes To Cells, 2015, 20, 108-120.	1.2	13
18	Tcf3 Represses Wnt–β-Catenin Signaling and Maintains Neural Stem Cell Population during Neocortical Development. PLoS ONE, 2014, 9, e94408.	2.5	54

#	Article	IF	CITATIONS
19	The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development (Cambridge), 2014, 141, 4343-4353.	2.5	66
20	A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16939-16944.	7.1	66
21	HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nature Neuroscience, 2012, 15, 1127-1133.	14.8	117
22	PDK1 regulates the generation of oligodendrocyte precursor cells at an early stage of mouse telencephalic development. Genes To Cells, 2012, 17, 326-335.	1.2	8
23	Epigenetic control of neural precursor cell fate during development. Nature Reviews Neuroscience, 2010, 11, 377-388.	10.2	327
24	Wnt signaling and its downstream target N-myc regulate basal progenitors in the developing neocortex. Development (Cambridge), 2010, 137, 1035-1044.	2.5	81
25	Polycomb Limits the Neurogenic Competence of Neural Precursor Cells to Promote Astrogenic Fate Transition. Neuron, 2009, 63, 600-613.	8.1	420
26	JNK phosphorylates synaptotagmin-4 and enhances Ca2+-evoked release. EMBO Journal, 2008, 27, 76-87.	7.8	19
27	Stage-dependent fate determination of neural precursor cells in mouse forebrain. Neuroscience Research, 2005, 51, 331-336.	1.9	119
28	The Wnt/β-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development (Cambridge), 2004, 131, 2791-2801.	2.5	518
29	A Supramolecular Oscillator Composed of Carbon Nanocluster C120and a Rhodium(III) Porphyrin Cyclic Dimer. Journal of the American Chemical Society, 2002, 124, 12086-12087.	13.7	63
30	Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III). Angewandte Chemie - International Edition, 2001, 40, 1857-1861.	13.8	169
31	Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III). Angewandte Chemie - International Edition, 2001, 40, 1857-1861.	13.8	4
32	Cyclic Dimers of Metalloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect of Rhodium(III) We thank Dr. F. Hasegawa of the Science University of Tokyo for HR-MS measurements. JY.Z. and K.S. thank the JSPS for financial support Angewandte Chemie - International Edition, 2001, 40, 1857-1861.	13.8	4