List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9072139/publications.pdf Version: 2024-02-01

MEDLIN L ROBB

#	Article	IF	CITATIONS
1	Paradoxically Greater Persistence of HIV RNA-Positive Cells in Lymphoid Tissue When ART Is Initiated in the Earliest Stage of Infection. Journal of Infectious Diseases, 2022, 225, 2167-2175.	4.0	6
2	HIV-1 infections with multiple founders associate with the development of neutralization breadth. PLoS Pathogens, 2022, 18, e1010369.	4.7	5
3	Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. Npj Vaccines, 2022, 7, 53.	6.0	4
4	Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nature Communications, 2022, 13, .	12.8	12
5	Associations of gender identity with sexual behaviours, social stigma and sexually transmitted infections among adults who have sex with men in Abuja and Lagos, Nigeria. Journal of the International AIDS Society, 2022, 25, .	3.0	3
6	HLA-Bâ^—46 associates with rapid HIV disease progression in Asian cohorts and prominent differences in NK cell phenotype. Cell Host and Microbe, 2022, 30, 1173-1185.e8.	11.0	5
7	Factors influencing estimates of HIV-1 infection timing using BEAST. PLoS Computational Biology, 2021, 17, e1008537.	3.2	4
8	TLR7 agonist, N6-LS and PGT121 delayed viral rebound in SHIV-infected macaques after antiretroviral therapy interruption. PLoS Pathogens, 2021, 17, e1009339.	4.7	32
9	B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host and Microbe, 2021, 29, 564-578.e9.	11.0	18
10	Timing HIV infection with a simple and accurate population viral dynamics model. Journal of the Royal Society Interface, 2021, 18, 20210314.	3.4	8
11	RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evolution, 2021, 7, veab057.	4.9	2
12	Abrupt and altered cell-type specific DNA methylation profiles in blood during acute HIV infection persists despite prompt initiation of ART. PLoS Pathogens, 2021, 17, e1009785.	4.7	12
13	Limited Evidence for a Relationship between HIV-1 Glycan Shield Features in Early Infection and the Development of Neutralization Breadth. Journal of Virology, 2021, 95, e0079721.	3.4	2
14	The transcription factor CREB1 is a mechanistic driver of immunogenicity and reduced HIV-1 acquisition following ALVAC vaccination. Nature Immunology, 2021, 22, 1294-1305.	14.5	20
15	Preferential and persistent impact of acute HIV-1 infection on CD4 ⁺ iNKT cells in colonic mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
16	Young at risk-people in Maputo City, Mozambique, present a high willingness to participate in HIV trials: Results from an HIV vaccine preparedness cohort study. PLoS ONE, 2021, 16, e0260126.	2.5	1
17	Dynamics of Human Immunodeficiency Virus-1 Genetic Diversification During Acute Infection. Open Forum Infectious Diseases, 2020, 7, ofaa429.	0.9	1
18	Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): a randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. Lancet HIV,the, 2020, 7, e688-e698.	4.7	58

#	Article	IF	CITATIONS
19	Feasibility and safety of research sigmoid colon biopsy in a cohort of Thai men who have sex with men with acute HIV-1. Journal of Virus Eradication, 2020, 6, 7-10.	0.5	1
20	Evaluation of HIV-1 neutralizing and binding antibodies in maternal-infant transmission in Thailand. Virology, 2020, 548, 152-159.	2.4	2
21	Adjuvanted HIV-1 vaccine promotes antibody-dependent phagocytic responses and protects against heterologous SHIV challenge. PLoS Pathogens, 2020, 16, e1008764.	4.7	37
22	Longitudinal Analysis of Peripheral and Colonic CD161+ CD4+ T Cell Dysfunction in Acute HIV-1 Infection and Effects of Early Treatment Initiation. Viruses, 2020, 12, 1426.	3.3	3
23	A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection. PLoS Pathogens, 2020, 16, e1008171.	4.7	4
24	Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV and effect on viral rebound after antiretroviral therapy interruption. Nature Medicine, 2020, 26, 498-501.	30.7	43
25	Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Science Translational Medicine, 2020, 12, .	12.4	69
26	Accelerating Development of SARS-CoV-2 Vaccines — The Role for Controlled Human Infection Models. New England Journal of Medicine, 2020, 383, e63.	27.0	73
27	Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV,the, 2020, 7, e238-e248.	4.7	33
28	Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand. PLoS Pathogens, 2020, 16, e1008179.	4.7	24
29	Mathematical modeling to reveal breakthrough mechanisms in the HIV Antibody Mediated Prevention (AMP) trials. PLoS Computational Biology, 2020, 16, e1007626.	3.2	20
30	Dynamic MAIT cell response with progressively enhanced innateness during acute HIV-1 infection. Nature Communications, 2020, 11, 272.	12.8	38
31	Preferential Infection of α4β7+ Memory CD4+ T Cells During Early Acute Human Immunodeficiency Virus Type 1 Infection. Clinical Infectious Diseases, 2020, 71, e735-e743.	5.8	14
32	Boosting with AIDSVAX B/E Enhances Env Constant Region 1 and 2 Antibody-Dependent Cellular Cytotoxicity Breadth and Potency. Journal of Virology, 2020, 94, .	3.4	19
33	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	30.7	61
34	HIV vaccine delayed boosting increases Env variable region 2–specific antibody effector functions. JCI Insight, 2020, 5, .	5.0	18
35	Protein-based, but not viral vector alone, HIV vaccine boosting drives an IgG1-biased polyfunctional humoral immune response. JCI Insight, 2020, 5, .	5.0	12
36	Plasmacytoid dendritic cells sense HIV replication before detectable viremia following treatment interruption. Journal of Clinical Investigation, 2020, 130, 2845-2858.	8.2	31

#	Article	IF	CITATIONS
37	Neutralizing antibody VRC01 failed to select for HIV-1 mutations upon viral rebound. Journal of Clinical Investigation, 2020, 130, 3299-3304.	8.2	24
38	Therapeutic vaccination of SIV-infected, ART-treated infant rhesus macaques using Ad48/MVA in combination with TLR-7 stimulation. PLoS Pathogens, 2020, 16, e1008954.	4.7	22
39	RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathogens, 2020, 16, e1009101.	4.7	13
40	Feasibility and safety of research sigmoid colon biopsy in a cohort of Thai men who have sex with men with acute HIV-1. Journal of Virus Eradication, 2020, 6, 7-10.	0.5	0
41	Title is missing!. , 2020, 16, e1007626.		0
42	Title is missing!. , 2020, 16, e1007626.		0
43	Title is missing!. , 2020, 16, e1007626.		0
44	Title is missing!. , 2020, 16, e1007626.		0
45	Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment. Viruses, 2019, 11, 607.	3.3	12
46	Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection. Cells, 2019, 8, 902.	4.1	15
47	A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials. Science Translational Medicine, 2019, 11, .	12.4	26
48	HIV prevalence and risk behavior among male and female adults screened for enrolment into a vaccine preparedness study in Maputo, Mozambique. PLoS ONE, 2019, 14, e0221682.	2.5	5
49	Immune correlates of the Thai RV144 HIV vaccine regimen in South Africa. Science Translational Medicine, 2019, 11, .	12.4	46
50	Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e737-e749.	4.7	43
51	Time to change the paradigm: limited condom and lubricant use among Nigerian men who have sex with men and transgender women despite availability and counseling. Annals of Epidemiology, 2019, 31, 11-19.e3.	1.9	18
52	Very Early Initiation of Antiretroviral Therapy During Acute HIV Infection Is Associated With Normalized Levels of Immune Activation Markers in Cerebrospinal Fluid but Not in Plasma. Journal of Infectious Diseases, 2019, 220, 1885-1891.	4.0	42
53	Decreased Seroreactivity in Individuals Initiating Antiretroviral Therapy during Acute HIV Infection. Journal of Clinical Microbiology, 2019, 57, .	3.9	24
54	The breadth of HIV-1 neutralizing antibodies depends on the conservation of key sites in their epitopes. PLoS Computational Biology, 2019, 15, e1007056.	3.2	19

#	Article	IF	CITATIONS
55	Harnessing circulating microRNAs for early HIV diagnosis. EBioMedicine, 2019, 44, 18-19.	6.1	1
56	Humoral Response to the HIV-1 Envelope V2 Region in a Thai Early Acute Infection Cohort. Cells, 2019, 8, 365.	4.1	6
57	Safety and efficacy of VRC01 broadly neutralising antibodies in adults with acutely treated HIV (RV397): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet HIV,the, 2019, 6, e297-e306.	4.7	73
58	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
59	Recommendations for analytical antiretroviral treatment interruptions in HIV research trials—report of a consensus meeting. Lancet HIV,the, 2019, 6, e259-e268.	4.7	139
60	Next-generation sequencing of HIV-1 single genome amplicons. Biomolecular Detection and Quantification, 2019, 17, 100080.	7.0	7
61	Terminal Effector CD8 T Cells Defined by an IKZF2+IL-7Râ^' Transcriptional Signature Express FcγRIIIA, Expand in HIV Infection, and Mediate Potent HIV-Specific Antibody-Dependent Cellular Cytotoxicity. Journal of Immunology, 2019, 203, 2210-2221.	0.8	23
62	Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV. Journal of Clinical Investigation, 2019, 129, 3361-3373.	8.2	54
63	HIV-1 Envelope Glycoproteins from Diverse Clades Differentiate Antibody Responses and Durability among Vaccinees. Journal of Virology, 2018, 92, .	3.4	46
64	Transcriptomic signatures of NK cells suggest impaired responsiveness in HIV-1 infection and increased activity post-vaccination. Nature Communications, 2018, 9, 1212.	12.8	44
65	First-in-Human Randomized, Controlled Trial of Mosaic HIV-1 Immunogens Delivered via a Modified Vaccinia Ankara Vector. Journal of Infectious Diseases, 2018, 218, 633-644.	4.0	35
66	HIV-1-Specific IgA Monoclonal Antibodies from an HIV-1 Vaccinee Mediate Galactosylceramide Blocking and Phagocytosis. Journal of Virology, 2018, 92, .	3.4	45
67	Central Nervous System Inflammation and Infection during Early, Nonaccelerated Simian-Human Immunodeficiency Virus Infection in Rhesus Macaques. Journal of Virology, 2018, 92, .	3.4	33
68	Neutralization Sensitivity of a Novel HIV-1 CRF01_AE Panel of Infectious Molecular Clones. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 78, 348-355.	2.1	7
69	Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial. AIDS Research and Human Retroviruses, 2018, 34, 193-205.	1.1	17
70	Molecular epidemiology of a primarily MSM acute HIVâ€1 cohort in Bangkok, Thailand and connections within networks of transmission in Asia. Journal of the International AIDS Society, 2018, 21, e25204.	3.0	14
71	Optimizing the immunogenicity of HIV prime-boost DNA-MVA-rgp140/GLA vaccines in a phase II randomized factorial trial design. PLoS ONE, 2018, 13, e0206838.	2.5	25
72	Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV,the, 2018, 5, e366-e378.	4.7	86

#	Article	IF	CITATIONS
73	Limited immune surveillance in lymphoid tissue by cytolytic CD4+ T cells during health and HIV disease. PLoS Pathogens, 2018, 14, e1006973.	4.7	30
74	Evolution of HIV-1 within untreated individuals and at the population scale in Uganda. PLoS Pathogens, 2018, 14, e1007167.	4.7	27
75	Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet, The, 2018, 392, 232-243.	13.7	269
76	Structural and functional brain imaging in acute HIV. NeuroImage: Clinical, 2018, 20, 327-335.	2.7	34
77	A flow cytometry based assay that simultaneously measures cytotoxicity and monocyte mediated antibody dependent effector activity. Journal of Immunological Methods, 2018, 462, 74-82.	1.4	19
78	Normalization of Soluble CD163 Levels After Institution of Antiretroviral Therapy During Acute HIV Infection Tracks with Fewer Neurological Abnormalities. Journal of Infectious Diseases, 2018, 218, 1453-1463.	4.0	28
79	Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nature Medicine, 2018, 24, 923-926.	30.7	263
80	Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight, 2018, 3, .	5.0	16
81	Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection. PLoS Pathogens, 2018, 14, e1006888.	4.7	26
82	Delayed differentiation of potent effector CD8 ⁺ T cells reducing viremia and reservoir seeding in acute HIV infection. Science Translational Medicine, 2017, 9, .	12.4	95
83	Accessories to SIV Control: T Cell Vaccination Shows Potential. EBioMedicine, 2017, 18, 17-18.	6.1	0
84	Randomized, Double-Blind Evaluation of Late Boost Strategies for HIV-Uninfected Vaccine Recipients in the RV144 HIV Vaccine Efficacy Trial. Journal of Infectious Diseases, 2017, 215, 1255-1263.	4.0	57
85	High Number of Activated CD8+ T Cells Targeting HIV Antigens Are Present in Cerebrospinal Fluid in Acute HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2017, 75, 108-117.	2.1	31
86	Comparison of Antibody Responses Induced by RV144, VAX003, and VAX004 Vaccination Regimens. AIDS Research and Human Retroviruses, 2017, 33, 410-423.	1.1	38
87	Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16–STING–Type I IFN Pathway and AIM2 Sensor. Journal of Immunology, 2017, 199, 3293-3305.	0.8	33
88	Persistent, Albeit Reduced, Chronic Inflammation in Persons Starting Antiretroviral Therapy in Acute HIV Infection. Clinical Infectious Diseases, 2017, 64, 124-131.	5.8	200
89	Viral kinetics in untreated versus treated acute HIV infection in prospective cohort studies in Thailand. Journal of the International AIDS Society, 2017, 20, 21652.	3.0	16
90	Acute HIV infection detection and immediate treatment estimated to reduce transmission by 89% among men who have sex with men in Bangkok. Journal of the International AIDS Society, 2017, 20, 21708.	3.0	48

#	Article	IF	CITATIONS
91	Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathogens, 2017, 13, e1006510.	4.7	63
92	Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology, 2017, 508, 199-212.	2.4	18
93	Computational analysis of antibody dynamics identifies recent HIV-1 infection. JCI Insight, 2017, 2, .	5.0	11
94	V1V2-specific complement activating serum IgG as a correlate of reduced HIV-1 infection risk in RV144. PLoS ONE, 2017, 12, e0180720.	2.5	55
95	Boosting of HIV envelope CD4 binding site antibodies with long variable heavy third complementarity determining region in the randomized double blind RV305 HIV-1 vaccine trial. PLoS Pathogens, 2017, 13, e1006182.	4.7	38
96	Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection. Journal of Virus Eradication, 2016, 2, 43-48.	0.5	73
97	Impact of early cART in the gut during acute HIV infection. JCI Insight, 2016, 1, .	5.0	56
98	Virologic failure is uncommon after treatment initiation during acute HIV infection. Aids, 2016, 30, 1943-1950.	2.2	21
99	Prospective Study of Acute HIV-1 Infection in Adults in East Africa and Thailand. New England Journal of Medicine, 2016, 374, 2120-2130.	27.0	229
100	The doctor's dilemma and vaccine therapy for HIV. Lancet HIV,the, 2016, 3, e450-e451.	4.7	0
101	HIV DNA Set Point is Rapidly Established in Acute HIV Infection and Dramatically Reduced by Early ART. EBioMedicine, 2016, 11, 68-72.	6.1	193
102	Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys. Nature, 2016, 540, 284-287.	27.8	246
103	Lessons from acute HIV infection. Current Opinion in HIV and AIDS, 2016, 11, 555-560.	3.8	47
104	Initiation of Antiretroviral Therapy During Acute HIV-1 Infection Leads to a High Rate of Nonreactive HIV Serology. Clinical Infectious Diseases, 2016, 63, 555-561.	5.8	104
105	Standardization of a cytometric p24-capture bead-assay for the detection of main HIV-1 subtypes Journal of Virological Methods, 2016, 230, 45-52.	2.1	3
106	Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection. Journal of Virology, 2016, 90, 4005-4016.	3.4	25
107	Circulating HIV-Specific Interleukin-21+CD4+ T Cells Represent Peripheral Tfh Cells with Antigen-Dependent Helper Functions. Immunity, 2016, 44, 167-178.	14.3	104
108	Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. Journal of Virology, 2016, 90, 1321-1332.	3.4	68

#	Article	IF	CITATIONS
109	Sex and Urbanicity Contribute to Variation in Lymphocyte Distribution across Ugandan Populations. PLoS ONE, 2016, 11, e0146196.	2.5	5
110	Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathogens, 2016, 12, e1005663.	4.7	25
111	Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection. PLoS Pathogens, 2016, 12, e1005805.	4.7	36
112	A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda. ELife, 2016, 5, .	6.0	46
113	Virological and immunological characteristics of HIV-infected individuals at the earliest stage of infection. Journal of Virus Eradication, 2016, 2, 43-48.	0.5	45
114	Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials. PLoS ONE, 2015, 10, e0136626.	2.5	23
115	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
116	COMPASS identifies T-cell subsets correlated with clinical outcomes. Nature Biotechnology, 2015, 33, 610-616.	17.5	232
117	HIV Type 1 Disease Progression to AIDS and Death in a Rural Ugandan Cohort Is Primarily Dependent on Viral Load Despite Variable Subtype and T-Cell Immune Activation Levels. Journal of Infectious Diseases, 2015, 211, 1574-1584.	4.0	17
118	Prospects for a globally effective HIV-1 vaccine. Vaccine, 2015, 33, D4-D12.	3.8	28
119	Comparable Antigenicity and Immunogenicity of Oligomeric Forms of a Novel, Acute HIV-1 Subtype C gp145 Envelope for Use in Preclinical and Clinical Vaccine Research. Journal of Virology, 2015, 89, 7478-7493.	3.4	33
120	Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial. PLoS Computational Biology, 2015, 11, e1003973.	3.2	51
121	HLA class II genes modulate vaccine-induced antibody responses to affect HIV-1 acquisition. Science Translational Medicine, 2015, 7, 296ra112.	12.4	47
122	Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia. Journal of Virology, 2015, 89, 7494-7505.	3.4	70
123	HIV-1 infections with multiple founders are associated with higher viral loads than infections with single founders. Nature Medicine, 2015, 21, 1139-1141.	30.7	50
124	Prospects for a Globally Effective HIV-1 Vaccine. American Journal of Preventive Medicine, 2015, 49, S307-S318.	3.0	29
125	The transient HIV remission in the Mississippi baby: why is this good news?. Journal of the International AIDS Society, 2014, 17, 19859.	3.0	22
126	Aggregate complexes of HIV-1 induced by multimeric antibodies. Retrovirology, 2014, 11, 78.	2.0	26

#	Article	IF	CITATIONS
127	Initiation of ART during Early Acute HIV Infection Preserves Mucosal Th17 Function and Reverses HIV-Related Immune Activation. PLoS Pathogens, 2014, 10, e1004543.	4.7	218
128	Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses. EBioMedicine, 2014, 1, 37-45.	6.1	55
129	HIV-1 Vaccine-Induced C1 and V2 Env-Specific Antibodies Synergize for Increased Antiviral Activities. Journal of Virology, 2014, 88, 7715-7726.	3.4	169
130	The Relationship between Stigma, Disclosure, and Adherence among Participants in the African Cohort Study. AIDS Research and Human Retroviruses, 2014, 30, A167-A167.	1.1	0
131	HIV-1 vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 1734-1746.	3.3	30
132	Shot in the HAART: vaccine therapy for HIV. Lancet Infectious Diseases, The, 2014, 14, 259-260.	9.1	6
133	Vaccine Induced Seroreactivity in RV144 Vaccine Recipients in RV305, a Placebo Controlled Assessment of Late Boosts with ALVAC-HIV and AIDSVAX B/E. AIDS Research and Human Retroviruses, 2014, 30, A191-A191.	1.1	0
134	HIV-specific Antibody in Rectal Secretions Following Late Boosts in RV144 Participants (RV305). AIDS Research and Human Retroviruses, 2014, 30, A33-A33.	1.1	11
135	Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13439-13444.	7.1	49
136	Analysis of HLA A*02 Association with Vaccine Efficacy in the RV144 HIV-1 Vaccine Trial. Journal of Virology, 2014, 88, 8242-8255.	3.4	55
137	Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature, 2014, 512, 74-77.	27.8	527
138	HLA class I, KIR, and genome-wide SNP diversity in the RV144 Thai phase 3 HIV vaccine clinical trial. Immunogenetics, 2014, 66, 299-310.	2.4	14
139	Targeted deep sequencing of HIV-1 using the IonTorrentPCM platform. Journal of Virological Methods, 2014, 205, 7-16.	2.1	5
140	FCGR2C polymorphisms associate with HIV-1 vaccine protection in RV144 trial. Journal of Clinical Investigation, 2014, 124, 3879-3890.	8.2	99
141	Nautilus: A Bioinformatics Package for the Analysis of HIV Type 1 Targeted Deep Sequencing Data. AIDS Research and Human Retroviruses, 2013, 29, 1361-1364.	1.1	6
142	Protective Efficacy of a Global HIV-1 Mosaic Vaccine against Heterologous SHIV Challenges in Rhesus Monkeys. Cell, 2013, 155, 531-539.	28.9	334
143	Extended Evaluation of the Virologic, Immunologic, and Clinical Course of Volunteers Who Acquired HIV-1 Infection in a Phase III Vaccine Trial of ALVAC-HIV and AIDSVAX B/E. Journal of Infectious Diseases, 2013, 207, 1195-1205.	4.0	56
144	Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial. PLoS ONE, 2013, 8, e75665.	2.5	214

#	Article	IF	CITATIONS
145	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	4.0	273
146	The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120. AIDS Research and Human Retroviruses, 2012, 28, 1444-1457.	1.1	191
147	Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infectious Diseases, The, 2012, 12, 531-537.	9.1	201
148	Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature, 2012, 490, 417-420.	27.8	405
149	Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature, 2012, 482, 89-93.	27.8	452
150	Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. New England Journal of Medicine, 2012, 366, 1275-1286.	27.0	1,699
151	HIV vaccine development: a new beginning. Expert Review of Vaccines, 2011, 10, 925-927.	4.4	1
152	Innate and Adaptive Immune Responses Both Contribute to Pathological CD4 T Cell Activation in HIV-1 Infected Ugandans. PLoS ONE, 2011, 6, e18779.	2.5	36
153	Phase I Study of Safety and Immunogenicity of an Escherichia coli-Derived Recombinant Protective Antigen (rPA) Vaccine to Prevent Anthrax in Adults. PLoS ONE, 2010, 5, e13849.	2.5	35
154	Quality Monitoring of HIV-1-Infected and Uninfected Peripheral Blood Mononuclear Cell Samples in a Resource-Limited Setting. Vaccine Journal, 2010, 17, 910-918.	3.1	20
155	Prime–boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1. Expert Review of Vaccines, 2010, 9, 1055-1069.	4.4	62
156	HIV vaccine development: past, present and future. IDrugs: the Investigational Drugs Journal, 2010, 13, 852-6.	0.7	0
157	Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. New England Journal of Medicine, 2009, 361, 2209-2220.	27.0	2,748
158	Design and evaluation of multi-gene, multi-clade HIV-1 MVA vaccines. Vaccine, 2009, 27, 5885-5895.	3.8	51
159	Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology, 2008, 376, 101-111.	2.4	51
160	Cross-clade neutralization patterns among HIV-1 strains from the six major clades of the pandemic evaluated and compared in two different models. Virology, 2008, 375, 529-538.	2.4	88
161	Failure of the Merck HIV vaccine: an uncertain step forward. Lancet, The, 2008, 372, 1857-1858.	13.7	57
162	Effect of Human Immunodeficiency Virus Type 1 (HIVâ€1) Subtype on Disease Progression in Persons from Rakai, Uganda, with Incident HIVâ€1 Infection. Journal of Infectious Diseases, 2008, 197, 707-713.	4.0	230

#	Article	IF	CITATIONS
163	HyperPack: A Software Package for the Study of Levels, Contexts, and Patterns of APOBEC-Mediated Hypermutation in HIV. AIDS Research and Human Retroviruses, 2007, 23, 554-557.	1.1	9
164	Distinguishing molecular forms of HIV-1 in Asia with a high-throughput, fluorescent genotyping assay, MHAbce v.2. Virology, 2007, 358, 178-191.	2.4	46
165	Higher HIV-1 Incidence and Genetic Complexity Along Main Roads in Rakai District, Uganda. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 43, 440-445.	2.1	44
166	Molecular Epidemiology of HIV Type 1 in Preparation for a Phase III Prime-Boost Vaccine Trial in Thailand and a New Approach to HIV Type 1 Genotyping. AIDS Research and Human Retroviruses, 2006, 22, 801-807.	1.1	17
167	HIV-1 diversity and prevalence differ between urban and rural areas in the Mbeya region of Tanzania. Aids, 2005, 19, 1517-1524.	2.2	47
168	The Changing Molecular Epidemiology of HIV Type 1 among Northern Thai Drug Users, 1999 to 2002. AIDS Research and Human Retroviruses, 2004, 20, 465-475.	1.1	72
169	Specific Antibody Responses to Vaccination with Bivalent CM235/SF2 gp120: Detection of Homologous and Heterologous Neutralizing Antibody to Subtype E (CRF01.AE) HIV Type 1. AIDS Research and Human Retroviruses, 2003, 19, 807-816.	1.1	27
170	Among 46 Near Full Length HIV Type 1 Genome Sequences from Rakai District, Uganda, Subtype D and AD Recombinants Predominate. AIDS Research and Human Retroviruses, 2002, 18, 1281-1290.	1.1	82
171	Forty-one near full-length HIV-1 sequences from Kenya reveal an epidemic of subtype A and A-containing recombinants. Aids, 2002, 16, 1809-1820.	2.2	99
172	Protection of Macaques against Pathogenic Simian/Human Immunodeficiency Virus 89.6PD by Passive Transfer of Neutralizing Antibodies. Journal of Virology, 1999, 73, 4009-4018.	3.4	725
173	Susceptibility to HIV-1 Acquisition linked to Malaria Exposure: A Case-control Study. Clinical Infectious Diseases, 0, , .	5.8	Ο