Andrea Clavijo McCormick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9071798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 2012, 17, 303-310.	8.8	402
2	Herbivoreâ€induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant, Cell and Environment, 2014, 37, 1909-1923.	5.7	120
3	Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant, Cell and Environment, 2014, 37, 1836-1844.	5.7	112
4	Herbivoreâ€induced poplar cytochrome P450 enzymes of the <scp>CYP</scp> 71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant Journal, 2014, 80, 1095-1107.	5.7	105
5	Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense A. Plant Cell, 2013, 25, 4737-4754.	6.6	104
6	Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 58-63.	2.7	46
7	The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology, 2014, 14, 304.	3.6	42
8	Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecology and Evolution, 2016, 6, 8569-8582.	1.9	39
9	Herbivore-induced volatile emission from old-growth black poplar trees under field conditions. Scientific Reports, 2019, 9, 7714.	3.3	21
10	Natural Variation in Volatile Emissions of the Invasive Weed Calluna vulgaris in New Zealand. Plants, 2020, 9, 283.	3.5	21
11	Comparative in vitro seed germination and seedling development in tropical and temperate epiphytic and temperate terrestrial orchids. Plant Cell, Tissue and Organ Culture, 2020, 143, 619-633.	2.3	17
12	Factors affecting propolis production. Journal of Apicultural Research, 2023, 62, 162-170.	1.5	16
13	Divergent behavioural responses of gypsy moth (Lymantria dispar) caterpillars from three different subspecies to potential host trees. Scientific Reports, 2019, 9, 8953.	3.3	13
14	Comparative Seed Morphology of Tropical and Temperate Orchid Species with Different Growth Habits. Plants, 2020, 9, 161.	3.5	13
15	Chemical Ecology and Olfaction in Short-Horned Grasshoppers (Orthoptera: Acrididae). Journal of Chemical Ecology, 2022, 48, 121-140.	1.8	13
16	Exploring the Effects of Plant Odors, from Tree Species of Differing Host Quality, on the Response of Lymantria disparÂMales to Female Sex Pheromones. Journal of Chemical Ecology, 2017, 43, 243-253.	1.8	12
17	Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites. Scientific Reports, 2020, 10, 11736.	3.3	11
18	Metabolomic analysis of host plant biochemistry could improve the effectiveness and safety of classical weed biocontrol. Biological Control, 2021, 160, 104663.	3.0	10

#	Article	IF	CITATIONS
19	Seed viability and fatty acid profiles of five orchid species before and after ageing. Plant Biology, 2022, 24, 168-175.	3.8	10
20	Parthenogenetic Females of the Stick Insect Clitarchus hookeri Maintain Sexual Traits. Insects, 2019, 10, 202.	2.2	9
21	Herbivory and Attenuated UV Radiation Affect Volatile Emissions of the Invasive Weed Calluna vulgaris. Molecules, 2020, 25, 3200.	3.8	9
22	Carcass and meat quality of finished and non-finished Limousin heifers from alpine livestock systems differing in altitudinal origin of the forage. Archives of Animal Nutrition, 2016, 70, 108-126.	1.8	8
23	Honeydew Deposition by the Giant Willow Aphid (Tuberolachnus salignus) Affects Soil Biota and Soil Biochemical Properties. Insects, 2020, 11, 460.	2.2	8
24	Effects of Two Invasive Weeds on Arthropod Community Structure on the Central Plateau of New Zealand. Plants, 2020, 9, 919.	3.5	6
25	The potential of harlequin ladybird beetle Harmonia axyridis as a predator of the giant willow aphid Tuberolachnus salignus: voracity, life history and prey preference. BioControl, 2020, 65, 313-321.	2.0	5
26	Seasonal abundance of Tuberolachnus salignus and its effect on flowering of host willows of varying susceptibility. Journal of Applied Entomology, 2021, 145, 543-552.	1.8	5
27	Volatile Profiling of Fifteen Willow Species and Hybrids and Their Responses to Giant Willow Aphid Infestation. Agronomy, 2020, 10, 1404.	3.0	4
28	Effect of willow cultivar and plant age on the melezitose content of giant willow aphid () Tj ETQq0 0 0 rgBT /O	verlock 10 1 1.3	f 50 382 Td (
29	Seasonal Volatile Emission Patterns of the Endemic New Zealand Shrub Dracophyllum subulatum on the North Island Central Plateau. Frontiers in Plant Science, 2021, 12, 734531.	3.6	4
30	The giant willow aphid (Tuberolachnus salignus) and its effects on the survival and growth of willows. Agricultural and Forest Entomology, 2021, 23, 420.	1.3	3
31	MÄnuka Clones Differ in Their Volatile Profiles: Potential Implications for Plant Defence, Pollinator Attraction and Bee Products. Agronomy, 2022, 12, 169.	3.0	3
32	A mini-review on the impact of common gorse in its introduced ranges. Tropical Ecology, 2022, , 1-25.	1.2	3
33	Exploring the Chemical Properties and Biological Activity of Four New Zealand Monofloral Honeys to Support the MÄori Vision and Aspirations. Molecules, 2022, 27, 3282.	3.8	1
34	Characterization of Riparian Tree Communities along a River Basin in the Pacific Slope of Guatemala. Forests, 2021, 12, 898.	2.1	0
35	Volatile emissions of six New Zealand fern species in response to physical damage and herbivory. New Zealand Journal of Ecology, 2020, 44, .	1.1	0
36	Orchid seed micro-morphometry: importance to species' biology, ecology, and conservation. Acta Horticulturae, 2022, , 153-162.	0.2	0