
Kohki Yoshimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9071389/publications.pdf Version: 2024-02-01

KOHKI YOSHIMOTO

#	Article	IF	CITATIONS
1	Autophagy triggered by ironâ€mediated <scp>ER</scp> stress is an important stress response to the early phase of Pi starvation in plants. Plant Journal, 2022, 110, 1370-1381.	5.7	5
2	The role of reticulophagy under early phase phosphate starvation in plant cells. , 2022, 1, 256-259.		0
3	Ammonium stress increases microautophagic activity while impairing macroautophagic flux in Arabidopsis roots. Plant Journal, 2021, 105, 1083-1097.	5.7	13
4	Optimal Distribution of Iron to Sink Organs via Autophagy Is Important for Tolerance to Excess Zinc in Arabidopsis. Plant and Cell Physiology, 2021, 62, 515-527.	3.1	7
5	A proposed role for endomembrane trafficking processes in regulating tonoplast content and vacuole dynamics under ammonium stress conditions in Arabidopsis root cells. Plant Signaling and Behavior, 2021, 16, 1924977.	2.4	4
6	Autophagy balances the zinc–iron seesaw caused by Zn-stress. Trends in Plant Science, 2021, 26, 882-884.	8.8	10
7	RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. Plant Physiology, 2021, 185, 318-330.	4.8	12
8	Editorial: Organelle Autophagy in Plant Development. Frontiers in Plant Science, 2020, 11, 502.	3.6	1
9	Importance of non-systemic leaf autophagy for suppression of zinc starvation induced-chlorosis. Plant Signaling and Behavior, 2020, 15, 1746042.	2.4	2
10	Autophagy Increases Zinc Bioavailability to Avoid Light-Mediated Reactive Oxygen Species Production under Zinc Deficiency. Plant Physiology, 2020, 182, 1284-1296.	4.8	41
11	Thaumatin-like proteins and a cysteine protease inhibitor secreted by the pine wood nematode Bursaphelenchus xylophilus induce cell death in Nicotiana benthamiana. PLoS ONE, 2020, 15, e0241613.	2.5	12
12	Autophagy and Nutrients Management in Plants. Cells, 2019, 8, 1426.	4.1	50
13	Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds. Journal of Experimental Botany, 2018, 69, 1403-1414.	4.8	64
14	Unveiling the molecular mechanisms of plant autophagy – from autophagosomes to vacuoles in plants. Plant and Cell Physiology, 2018, 59, 1337-1344.	3.1	83
15	Plant autophagy is responsible for peroxisomal transition and plays an important role in the maintenance of peroxisomal quality. Autophagy, 2014, 10, 936-937.	9.1	14
16	Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Frontiers in Plant Science, 2014, 5, 11.	3.6	62
17	Quality control of plant peroxisomes in organ specific manner via autophagy. Journal of Cell Science, 2014, 127, 1161-8.	2.0	105
18	Autophagy, plant senescence, and nutrient recycling. Journal of Experimental Botany, 2014, 65, 3799-3811.	4.8	283

Конкі Үознімото

#	Article	IF	CITATIONS
19	Assessment and Optimization of Autophagy Monitoring Methods in Arabidopsis Roots Indicate Direct Fusion of Autophagosomes with Vacuoles. Plant and Cell Physiology, 2014, 55, 715-726.	3.1	67
20	Stitching together the Multiple Dimensions of Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on Metabolism, Development, and Plant Responses to the Environment in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 26, 1857-1877.	6.6	134
21	Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytologist, 2013, 199, 683-694.	7.3	143
22	Highly Oxidized Peroxisomes Are Selectively Degraded via Autophagy in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 4967-4983.	6.6	195
23	Beginning to Understand Autophagy, an Intracellular Self-Degradation System in Plants. Plant and Cell Physiology, 2012, 53, 1355-1365.	3.1	144
24	A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta, 2012, 236, 999-1012.	3.2	37
25	Autophagy machinery controls nitrogen remobilization at the wholeâ€plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytologist, 2012, 194, 732-740.	7.3	243
26	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
27	Autophagy in plants and phytopathogens. FEBS Letters, 2010, 584, 1350-1358.	2.8	67
28	The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant Journal, 2010, 64, no-no.	5.7	121
29	Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling. Autophagy, 2010, 6, 192-193.	9.1	22
30	Physiological roles of autophagy in plants: Does plant autophagy have a pro-death function?. Plant Signaling and Behavior, 2010, 5, 494-496.	2.4	3
31	Role of chloroplasts and other plastids in ageing and death of plants and animals: A tale of Vishnu and Shiva. Ageing Research Reviews, 2010, 9, 117-130.	10.9	21
32	Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves Â Â. Plant Physiology, 2009, 149, 885-893.	4.8	313
33	OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice. Molecules and Cells, 2009, 27, 67-74.	2.6	98
34	Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2914-2927.	6.6	531
35	Visualization of Rubisco-Containing Bodies Derived from Chloroplasts in Living Cells of Arabidopsis. , 2008, , 1207-1210.		0
36	Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of Chloroplasts to the Vacuole by an <i>ATG</i> Gene-Dependent Autophagic Process Â. Plant Physiology, 2008, 148, 142-155.	4.8	325

Конкі Үознімото

#	Article	IF	CITATIONS
37	In Vitro Reconstitution of Plant Atg8 and Atg12 Conjugation Systems Essential for Autophagy. Journal of Biological Chemistry, 2008, 283, 1921-1928.	3.4	103
38	Chloroplasts are partially mobilized to the vacuole by autophagy. Autophagy, 2008, 4, 961-962.	9.1	44
39	An Arabidopsis Homolog of Yeast ATG6/VPS30 Is Essential for Pollen Germination. Plant Physiology, 2007, 143, 1132-1139.	4.8	149
40	Autophagy in Development and Stress Responses of Plants. Autophagy, 2006, 2, 2-11.	9.1	327
41	AtATG Genes, Homologs of Yeast Autophagy Genes, are Involved in Constitutive Autophagy in Arabidopsis Root Tip Cells. Plant and Cell Physiology, 2006, 47, 1641-1652.	3.1	175
42	The Crystal Structure of Plant ATG12 and its Biological Implication in Autophagy. Autophagy, 2005, 1, 119-126.	9.1	104
43	Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. Plant Cell, 2004, 16, 2967-2983.	6.6	540
44	A Novel Selection Method Based on the Expression Level of Green Fluorescent Protein Measured with a Quantitative Fluorescence Imager. Plant Biotechnology, 2003, 20, 165-168.	1.0	1
45	Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. Plant Journal, 1999, 18, 455-463.	5.7	381