
Matthew B Hufford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative population genomics of maize domestication and improvement. Nature Genetics, 2012, 44, 808-811.	21.4	816
2	Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 2019, 20, 275.	8.8	579
3	Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44, 803-807.	21.4	577
4	The Genomic Signature of Crop-Wild Introgression in Maize. PLoS Genetics, 2013, 9, e1003477.	3.5	291
5	De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373, 655-662.	12.6	282
6	PLAB, a novel placental bone morphogenetic protein. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1354, 40-44.	2.4	190
7	Controlling invasive species in complex social landscapes. Frontiers in Ecology and the Environment, 2010, 8, 210-216.	4.0	184
8	Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13456-13461.	7.1	174
9	The interplay of demography and selection during maize domestication and expansion. Genome Biology, 2017, 18, 215.	8.8	172
10	Genome Size and Transposable Element Content as Determined by High-Throughput Sequencing in Maize and Zea luxurians. Genome Biology and Evolution, 2011, 3, 219-229.	2.5	167
11	Reshaping of the maize transcriptome by domestication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11878-11883.	7.1	154
12	Historical genomics of North American maize. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12420-12425.	7.1	151
13	Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics, 2020, 52, 565-571.	21.4	146
14	How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22, 3.	8.8	142
15	Complex Patterns of Local Adaptation in Teosinte. Genome Biology and Evolution, 2013, 5, 1594-1609.	2.5	139
16	The origin and evolution of maize in the Southwestern United States. Nature Plants, 2015, 1, 14003.	9.3	138
17	Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Molecular Ecology, 2009, 18, 750-761.	3.9	113
18	Recent demography drives changes in linked selection across the maize genome. Nature Plants, 2016, 2, 16084.	9.3	111

MATTHEW B HUFFORD

#	Article	IF	CITATIONS
19	Gapless assembly of maize chromosomes using long-read technologies. Genome Biology, 2020, 21, 121.	8.8	101
20	Technological advances in maize breeding: past, present and future. Theoretical and Applied Genetics, 2019, 132, 817-849.	3.6	97
21	Inferences from the Historical Distribution of Wild and Domesticated Maize Provide Ecological and Evolutionary Insight. PLoS ONE, 2012, 7, e47659.	2.5	79
22	The extent of adaptive wild introgression in crops. New Phytologist, 2019, 221, 1279-1288.	7.3	75
23	Crop Biodiversity: An Unfinished Magnum Opus of Nature. Annual Review of Plant Biology, 2019, 70, 727-751.	18.7	74
24	Independent Molecular Basis of Convergent Highland Adaptation in Maize. Genetics, 2015, 200, 1297-1312.	2.9	67
25	Teosinte as a model system for population and ecological genomics. Trends in Genetics, 2012, 28, 606-615.	6.7	65
26	GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. BMC Genomics, 2020, 21, 193.	2.8	52
27	Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses. Molecular Ecology, 2016, 25, 911-928.	3.9	41
28	Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nature Communications, 2020, 11, 2288.	12.8	39
29	Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Molecular Biology and Evolution, 2021, 38, 3567-3580.	8.9	35
30	Practical Challenges in Private Stewardship of Rangeland Ecosystems: Yellow Starthistle Control in Sierra Nevadan Foothills. Rangeland Ecology and Management, 2009, 62, 28-37.	2.3	29
31	Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research, 2021, 31, 1245-1257.	5.5	29
32	Characterization of introgression from the teosinte <i>Zea mays</i> ssp. <i>mexicana</i> to Mexican highland maize. PeerJ, 2019, 7, e6815.	2.0	24
33	Haplotype structure in commercial maize breeding programs in relation to key founder lines. Theoretical and Applied Genetics, 2020, 133, 547-561.	3.6	23
34	Diversity and abundance of the abnormal chromosome 10 meiotic drive complex in Zea mays. Heredity, 2013, 110, 570-577.	2.6	22
35	A Tutorial of EDTA: Extensive De Novo TE Annotator. Methods in Molecular Biology, 2021, 2250, 55-67.	0.9	22
36	Evidence for a Unique DNA-Dependent RNA Polymerase in Cereal Crops. Molecular Biology and Evolution, 2018, 35, 2454-2462.	8.9	21

MATTHEW B HUFFORD

#	Article	IF	CITATIONS
37	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
38	SequelTools: a suite of tools for working with PacBio Sequel raw sequence data. BMC Bioinformatics, 2020, 21, 429.	2.6	19
39	The potential role of genetic assimilation during maize domestication. PLoS ONE, 2017, 12, e0184202.	2.5	17
40	Influence of cryptic population structure on observed mating patterns in the wild progenitor of maize (Zea mays ssp. parviglumis). Molecular Ecology, 2011, 20, 46-55.	3.9	16
41	Parallelism and convergence in post-domestication adaptation in cereal grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180245.	4.0	16
42	Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evolutionary Applications, 2022, 15, 817-837.	3.1	15
43	Resolution of the Mexican transgene detection controversy: error sources and scientific practice in commercial and ecological contexts. Molecular Ecology, 2009, 18, 4145-4150.	3.9	14
44	Genomic variation within the maize stiffâ€stalk heterotic germplasm pool. Plant Genome, 2021, 14, e20114.	2.8	14
45	Natural variation in teosinte at the domestication locus <i>teosinte branched1</i> (<i>tb1</i>). PeerJ, 2015, 3, e900.	2.0	13
46	A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
47	Major locus for spontaneous haploid genome doubling detected by a case–control GWAS in exotic maize germplasm. Theoretical and Applied Genetics, 2021, 134, 1423-1434.	3.6	9
48	Crop Domestication: A Sneak-Peek into the Midpoint of Maize Evolution. Current Biology, 2016, 26, R1240-R1242.	3.9	8
49	The Streptochaeta Genome and the Evolution of the Grasses. Frontiers in Plant Science, 2021, 12, 710383.	3.6	8
50	Evolution and Adaptation in the Maize Genome. Compendium of Plant Genomes, 2018, , 319-332.	0.5	6
51	Genomic abundance is not predictive of tandem repeat localization in grass genomes. PLoS ONE, 2017, 12, e0177896.	2.5	5
52	Domestication Genomics: Untangling the Complex History of African Rice. Current Biology, 2018, 28, R786-R788.	3.9	3
53	Comparative genomics provides insight into maize adaptation in temperate regions. Genome Biology, 2016, 17, 155.	8.8	1