Katherine J D A Excoffon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Coxsackievirus and Adenovirus Receptor Has a Short Half-Life in Epithelial Cells. Pathogens, 2022, 11, 173.	2.8	0
2	The magic of MAClâ€1: A scaffolding protein with multi signalosomes and functional plasticity. Biology of the Cell, 2022, 114, 185-198.	2.0	4
3	Adenovirus Co-Opts Neutrophilic Inflammation to Enhance Transduction of Epithelial Cells. Viruses, 2022, 14, 13.	3.3	21
4	MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. Journal of Virology, 2021, 95, e0004621.	3.4	5
5	Production of isoform-specific knockdown/knockout Madin–Darby canine kidney epithelial cells using CRISPR/Cas9. MethodsX, 2020, 7, 101149.	1.6	1
6	The coxsackievirus and adenovirus receptor: virological and biological beauty. FEBS Letters, 2020, 594, 1828-1837.	2.8	23
7	Isoform specific editing of the coxsackievirus and adenovirus receptor. Virology, 2019, 536, 20-26.	2.4	6
8	Spironolactone Depletes the XPB Protein andÂlnhibits DNA Damage Responses inÂUVB-Irradiated Human Skin. Journal of Investigative Dermatology, 2019, 139, 448-454.	0.7	19
9	A directed evolution approach to select for novel Adeno-associated virus capsids on an HIV-1 producer T cell line. Journal of Virological Methods, 2017, 250, 47-54.	2.1	8
10	Poliovirus Receptor: More than a simple viral receptor. Virus Research, 2017, 242, 1-6.	2.2	72
11	Adenovirus transduction: More complicated than receptor expression. Virology, 2017, 502, 144-151.	2.4	13
12	Adeno-Associated Virus 5 Transduces Adipose-Derived Stem Cells with Greater Efficacy Than Other Adeno-Associated Viral Serotypes. Human Gene Therapy Methods, 2016, 27, 219-227.	2.1	3
13	The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR). International Journal of Biochemistry and Cell Biology, 2015, 61, 29-34.	2.8	12
14	Adenovirus Entry From the Apical Surface of Polarized Epithelia Is Facilitated by the Host Innate Immune Response. PLoS Pathogens, 2015, 11, e1004696.	4.7	64
15	1. Alternative splicing of viral receptors: A review of the diverse morphologies and physiologies of adenoviral receptors. , 2014, 9, 1-24.		16
16	Coxsackievirus and adenovirus receptor (CAR) mediates trafficking of acid sensing ion channel 3 (ASIC3) via PSD-95. Biochemical and Biophysical Research Communications, 2012, 425, 13-18.	2.1	6
17	Sidestream Smoke Exposure Increases the Susceptibility of Airway Epithelia to Adenoviral Infection. PLoS ONE, 2012, 7, e49930.	2.5	13
18	Hoechst increases adenoâ€associated virusâ€mediated transgene expression in airway epithelia by inducing the cytomegalovirus promoter. Journal of Gene Medicine, 2012, 14, 366-373.	2.8	6

#	Article	IF	CITATIONS
19	Enhanced Sialic Acid-Dependent Endocytosis Explains the Increased Efficiency of Infection of Airway Epithelia by a Novel Adeno-Associated Virus. Journal of Virology, 2011, 85, 9023-9030.	3.4	23
20	Adenovirus 5–Fiber 35 Chimeric Vector Mediates Efficient Apical Correction of the Cystic Fibrosis Transmembrane Conductance Regulator Defect in Cystic Fibrosis Primary Airway Epithelia. Human Gene Therapy, 2010, 21, 251-269.	2.7	20
21	Isoform-Specific Regulation and Localization of the Coxsackie and Adenovirus Receptor in Human Airway Epithelia. PLoS ONE, 2010, 5, e9909.	2.5	59
22	Directed evolution of adeno-associated virus to an infectious respiratory virus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3865-3870.	7.1	149
23	Reovirus Preferentially Infects the Basolateral Surface and Is Released from the Apical Surface of Polarized Human Respiratory Epithelial Cells. Journal of Infectious Diseases, 2008, 197, 1189-1197.	4.0	56
24	Functional Effects of Coxsackievirus and Adenovirus Receptor Glycosylation on Homophilic Adhesion and Adenoviral Infection. Journal of Virology, 2007, 81, 5573-5578.	3.4	35
25	Paracellular Permeability Restricts Airway Epithelial Responses to Selectively Allow Activation by Mediators at the Basolateral Surface. Journal of Immunology, 2007, 178, 6395-6403.	0.8	51
26	A Novel Host Defense System of Airways Is Defective in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 174-183.	5.6	260
27	Cellular Localization and Activity of Ad-Delivered GFP-CFTR in Airway Epithelial and Tracheal Cells. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 631-639.	2.9	19
28	The Coxsackievirus and Adenovirus Receptor: A new adhesion protein in cochlear development. Hearing Research, 2006, 215, 1-9.	2.0	28
29	The Role of the Extracellular Domain in the Biology of the Coxsackievirus and Adenovirus Receptor. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 498-503.	2.9	27
30	A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. Journal of Cell Science, 2004, 117, 4401-4409.	2.0	93
31	Adenovirus-Mediated Erythropoietin Production by Airway Epithelia Is Enhanced by Apical Localization of the Coxsackie–Adenovirus Receptor in Vivo. Molecular Therapy, 2004, 10, 500-506.	8.2	9
32	The Coxsackie B Virus and Adenovirus Receptor Resides in a Distinct Membrane Microdomain. Journal of Virology, 2003, 77, 2559-2567.	3.4	52
33	Histamine alters E-cadherin cell adhesion to increase human airway epithelial permeability. Journal of Applied Physiology, 2003, 95, 394-401.	2.5	47