Eugene V Koonin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069227/publications.pdf

Version: 2024-02-01

576 103,839 papers citations

695

all docs

695

docs citations

695 times ranked

150

h-index

191

293 g-index

66322 citing authors

#	Article	IF	CITATIONS
1	The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003, 4, 41.	1.2	3,913
2	The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28, 33-36.	6. 5	3,734
3	Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 2015, 163, 759-771.	13.5	3,558
4	A Genomic Perspective on Protein Families. Science, 1997, 278, 631-637.	6.0	3,352
5	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	6.0	2,275
6	In vivo genome editing using Staphylococcus aureus Cas9. Nature, 2015, 520, 186-191.	13.7	2,237
7	Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 2008, 321, 960-964.	6.0	2,138
8	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
9	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	13.6	2,078
10	C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353, aaf5573.	6.0	1,647
11	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
12	Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science, 2000, 289, 1902-1906.	6.0	1,357
13	Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Research, 2015, 43, D261-D269.	6.5	1,345
14	Orthologs, Paralogs, and Evolutionary Genomics. Annual Review of Genetics, 2005, 39, 309-338.	3.2	1,084
15	Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017, 37, 67-78.	2.3	1,076
16	Horizontal Gene Transfer in Prokaryotes: Quantification and Classification. Annual Review of Microbiology, 2001, 55, 709-742.	2.9	1,024
17	Evolution and Taxonomy of Positive-Strand RNA Viruses: Implications of Comparative Analysis of Amino Acid Sequences. Critical Reviews in Biochemistry and Molecular Biology, 1993, 28, 375-430.	2.3	999
18	Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 2015, 60, 385-397.	4.5	971

#	Article	IF	CITATIONS
19	A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct, 2006, 1, 7.	1.9	961
20	A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 2004, 5, R7.	13.9	814
21	Diversity and evolution of class 2 CRISPR–Cas systems. Nature Reviews Microbiology, 2017, 15, 169-182.	13.6	792
22	Evolutionary history and higher order classification of AAA+ ATPases. Journal of Structural Biology, 2004, 146, 11-31.	1.3	711
23	A superfamily of conserved domains in DNA damage―responsive cell cycle checkpoint proteins. FASEB Journal, 1997, 11, 68-76.	0.2	684
24	Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research, 2008, 36, 6688-6719.	6.5	642
25	Selection in the evolution of gene duplications. Genome Biology, 2002, 3, research0008.1.	13.9	625
26	Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiology Letters, 2001, 203, 11-21.	0.7	597
27	Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 2017, 15, 161-168.	13.6	590
28	Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Reviews Microbiology, 2003, 1, 127-136.	13.6	582
29	Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Research, 1992, 20, 3279-3285.	6.5	567
30	The ancient Virus World and evolution of cells. Biology Direct, 2006, 1, 29.	1.9	559
31	Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 2016, 165, 949-962.	13.5	552
32	Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Research, 2006, 117, 156-184.	1.1	541
33	The structure of the protein universe and genome evolution. Nature, 2002, 420, 218-223.	13.7	536
34	Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science, 2016, 353, aad5147.	6.0	523
35	Functional and evolutionary implications of gene orthology. Nature Reviews Genetics, 2013, 14, 360-366.	7.7	516
36	Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends in Genetics, 2003, 19, 68-72.	2.9	511

#	Article	IF	Citations
37	The virophage as a unique parasite of the giant mimivirus. Nature, 2008, 455, 100-104.	13.7	505
38	Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses. Journal of Virology, 2001, 75, 11720-11734.	1.5	495
39	Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Research, 1989, 17, 8413-8438.	6.5	450
40	RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365, 48-53.	6.0	448
41	Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell, 2017, 65, 618-630.e7.	4.5	445
42	Origins and evolution of eukaryotic RNA interference. Trends in Ecology and Evolution, 2008, 23, 578-587.	4.2	442
43	COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research, 2021, 49, D274-D281.	6.5	441
44	Introns and the origin of nucleus–cytosol compartmentalization. Nature, 2006, 440, 41-45.	13.7	438
45	The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biology, 2001, 2, research0007.1.	13.9	437
46	Minimum Information about an Uncultivated Virus Genome (MIUViG). Nature Biotechnology, 2019, 37, 29-37.	9.4	414
47	Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 2015, 479-480, 2-25.	1.1	413
48	STAND, a Class of P-Loop NTPases Including Animal and Plant Regulators of Programmed Cell Death: Multiple, Complex Domain Architectures, Unusual Phyletic Patterns, and Evolution by Horizontal Gene Transfer. Journal of Molecular Biology, 2004, 343, 1-28.	2.0	407
49	Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research, 2014, 42, 6091-6105.	6.5	401
50	The evolutionary journey of Argonaute proteins. Nature Structural and Molecular Biology, 2014, 21, 743-753.	3.6	400
51	Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct, 2009, 4, 19.	1.9	390
52	Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21848-21853.	3.3	385
53	Origins and Evolution of the Global RNA Virome. MBio, 2018, 9, .	1.8	383
54	Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6, 38.	1.9	379

#	Article	IF	CITATIONS
55	Global Organization and Proposed Megataxonomy of the Virus World. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	378
56	Gene Loss, Protein Sequence Divergence, Gene Dispensability, Expression Level, and Interactivity Are Correlated in Eukaryotic Evolution. Genome Research, 2003, 13, 2229-2235.	2.4	367
57	Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 2013, 41, 4360-4377.	6.5	365
58	…Functional motifs…. Nature Genetics, 1996, 13, 266-268.	9.4	362
59	Orthology, paralogy and proposed classification for paralog subtypes. Trends in Genetics, 2002, 18, 619-620.	2.9	360
60	Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems. Journal of Bacteriology, 2011, 193, 6039-6056.	1.0	358
61	Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Molecular Cell, 2018, 70, 327-339.e5.	4.5	356
62	'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Research, 2004, 32, 5452-5463.	6.5	346
63	Functionally diverse type V CRISPR-Cas systems. Science, 2019, 363, 88-91.	6.0	342
64	Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E821-30.	3.3	341
65	Toprim-a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Research, 1998, 26, 4205-4213.	6.5	338
66	Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends in Genetics, 1998, 14, 442-444.	2.9	337
67	A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters, 1990, 262, 145-148.	1.3	336
68	Genome trees and the tree of life. Trends in Genetics, 2002, 18, 472-479.	2.9	336
69	Putative papain-related thiol proteases of positive-strand RNA viruses Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, \hat{l}_{\pm} - and coronaviruses. FEBS Letters, 1991, 288, 201-205.	1.3	333
70	Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Research, 2017, 45, D491-D498.	6.5	333
71	A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Research, 2002, 30, 482-496.	6.5	331
72	On the origin of genomes and cells within inorganic compartments. Trends in Genetics, 2005, 21, 647-654.	2.9	331

#	Article	IF	CITATIONS
73	Eukaryotic large nucleo-cytoplasmic DNA viruses: Clusters of orthologous genes and reconstruction of viral genome evolution. Virology Journal, 2009, 6, 223.	1.4	321
74	Who's your neighbor? New computational approaches for functional genomics. Nature Biotechnology, 2000, 18, 609-613.	9.4	319
75	Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evolutionary Biology, 2003, 3, 2.	3.2	316
76	Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Research, 2014, 42, 2577-2590.	6.5	315
77	Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environmental Microbiology, 2000, 2, 516-529.	1.8	313
78	Did DNA replication evolve twice independently?. Nucleic Acids Research, 1999, 27, 3389-3401.	6.5	312
79	Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature. Journal of Biological Chemistry, 2001, 276, 43487-43490.	1.6	307
80	Annotation and Classification of CRISPR-Cas Systems. Methods in Molecular Biology, 2015, 1311, 47-75.	0.4	304
81	Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Molecular Microbiology, 1997, 25, 619-637.	1.2	302
82	Diverse enzymatic activities mediate antiviral immunity in prokaryotes. Science, 2020, 369, 1077-1084.	6.0	302
83	HOWMANYGENESCANMAKE ACELL: The Minimal-Gene-Set Concept. Annual Review of Genomics and Human Genetics, 2000, 1, 99-116.	2.5	297
84	Origin and evolution of spliceosomal introns. Biology Direct, 2012, 7, 11.	1.9	292
85	Origin and evolution of the genetic code: The universal enigma. IUBMB Life, 2009, 61, 99-111.	1.5	288
86	Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Research, 2004, 32, 5260-5279.	6.5	284
87	The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 2010, 11, 209.	13.9	282
88	New dimensions of the virus world discovered through metagenomics. Trends in Microbiology, 2010, 18, 11-19.	3.5	282
89	The cyanobacterial genome core and the origin of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13126-13131.	3.3	277
90	The Impact of Comparative Genomics on Our Understanding of Evolution. Cell, 2000, 101, 573-576.	13.5	273

#	Article	IF	Citations
91	Genome Alignment, Evolution of Prokaryotic Genome Organization, and Prediction of Gene Function Using Genomic Context. Genome Research, 2001, 11, 356-372.	2.4	270
92	Genome reduction as the dominant mode of evolution. BioEssays, 2013, 35, 829-837.	1.2	267
93	Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180087.	1.8	258
94	"Megaviralesâ€, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Archives of Virology, 2013, 158, 2517-2521.	0.9	256
95	Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annual Review of Microbiology, 2017, 71, 233-261.	2.9	256
96	Engineering of CRISPR-Cas12b for human genome editing. Nature Communications, 2019, 10, 212.	5.8	249
97	A diverse superfamily of enzymes with ATPâ€dependent carboxylate—amine/thiol ligase activity. Protein Science, 1997, 6, 2639-2643.	3.1	248
98	The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nature Reviews Microbiology, 2008, 6, 925-939.	13.6	248
99	The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?. Biology Direct, 2006, 1, 22.	1.9	247
100	Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Research, 2005, 33, 3875-3896.	6.5	246
101	Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nature Microbiology, 2018, 3, 38-46.	5.9	245
102	Evolutionary Genomics of Lactic Acid Bacteria. Journal of Bacteriology, 2007, 189, 1199-1208.	1.0	242
103	A dual function of the CRISPR–Cas system in bacterial antivirus immunity and DNA repair. Molecular Microbiology, 2011, 79, 484-502.	1.2	241
104	Abundance of type I toxin–antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Research, 2010, 38, 3743-3759.	6.5	237
105	Search for a 'Tree of Life' in the thicket of the phylogenetic forest. Journal of Biology, 2009, 8, 59.	2.7	234
106	Giant viruses with an expanded complement of translation system components. Science, 2017, 356, 82-85.	6.0	234
107	Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct, 2009, 4, 29.	1.9	232
108	Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?. CRISPR Journal, 2018, 1, 325-336.	1.4	232

#	Article	IF	CITATIONS
109	Phylogenomics of Prokaryotic Ribosomal Proteins. PLoS ONE, 2012, 7, e36972.	1.1	227
110	Is evolution Darwinian or/and Lamarckian?. Biology Direct, 2009, 4, 42.	1.9	224
111	The Tree and Net Components of Prokaryote Evolution. Genome Biology and Evolution, 2010, 2, 745-756.	1.1	221
112	Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biology Direct, 2013, 8, 15.	1.9	221
113	Analogous Enzymes: Independent Inventions in Enzyme Evolution. Genome Research, 1998, 8, 779-790.	2.4	220
114	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins: Structure, Function and Bioinformatics, 2001, 43, 134-144.	1.5	218
115	Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Structural Biology, 2003, 3, 1.	2.3	218
116	Computational methods for Gene Orthology inference. Briefings in Bioinformatics, 2011, 12, 379-391.	3.2	217
117	A conserved NTP-motif in putative helicases. Nature, 1988, 333, 22-22.	13.7	216
118	Archaeal Clusters of Orthologous Genes (arCOGs): An Update and Application for Analysis of Shared Features between Thermococcales, Methanococcales, and Methanobacteriales. Life, 2015, 5, 818-840.	1.1	216
119	Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: Two families with distinct patterns of sequence and probably structure conservation. Virology, 1991, 184, 79-86.	1.1	214
120	Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science, 2021, 373, 882-889.	6.0	214
121	A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics, 2010, 26, 1481-1487.	1.8	213
122	Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiology, 2017, 2, 17081.	5.9	213
123	Evolution of diverse cell division and vesicle formation systems in Archaea. Nature Reviews Microbiology, 2010, 8, 731-741.	13.6	212
124	Multiple origins of viral capsid proteins from cellular ancestors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2401-E2410.	3.3	211
125	Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7358-E7366.	3.3	210
126	CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nature Reviews Microbiology, 2019, 17, 513-525.	13.6	205

#	Article	IF	Citations
127	Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 2014, 78, 278-303.	2.9	200
128	Evolutionary genomics of archaeal viruses: Unique viral genomes in the third domain of life. Virus Research, 2006, 117, 52-67.	1.1	198
129	A virocentric perspective on the evolution of life. Current Opinion in Virology, 2013, 3, 546-557.	2.6	198
130	Origin and Evolution of Eukaryotic Large Nucleo-Cytoplasmic DNA Viruses. Intervirology, 2010, 53, 284-292.	1.2	196
131	Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15193-15199.	3.3	196
132	Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	196
133	Photosystem I gene cassettes are present in marine virus genomes. Nature, 2009, 461, 258-262.	13.7	195
134	Provirophages and transpovirons as the diverse mobilome of giant viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18078-18083.	3.3	194
135	Darwinian evolution in the light of genomics. Nucleic Acids Research, 2008, 37, 1011-1034.	6.5	191
136	The origins of phagocytosis and eukaryogenesis. Biology Direct, 2009, 4, 9.	1.9	190
137	Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Research, 2018, 244, 36-52.	1.1	190
138	A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature, 2018, 558, 595-599.	13.7	190
139	The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biology, 2003, 4, R19.	13.9	189
139 140	The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biology, 2003, 4, R19. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Research, 2014, 42, 109-127.	13.9 6.5	189
	multiple ancient horizontal gene transfers. Genome Biology, 2003, 4, R19. Differences in DNA methylation between human neuronal and glial cells are concentrated in		
140	multiple ancient horizontal gene transfers. Genome Biology, 2003, 4, R19. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Research, 2014, 42, 109-127. Evolution of genome architecture. International Journal of Biochemistry and Cell Biology, 2009, 41,	6.5	187
140	multiple ancient horizontal gene transfers. Genome Biology, 2003, 4, R19. Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Research, 2014, 42, 109-127. Evolution of genome architecture. International Journal of Biochemistry and Cell Biology, 2009, 41, 298-306.	6.5	187

#	Article	lF	CITATIONS
145	The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes. MBio, 2017, 8, .	1.8	181
146	A Novel Family of Sequence-specific Endoribonucleases Associated with the Clustered Regularly Interspaced Short Palindromic Repeats. Journal of Biological Chemistry, 2008, 283, 20361-20371.	1.6	177
147	Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biology Direct, 2006, 1, 34.	1.9	176
148	Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Research, 2018, 244, 181-193.	1.1	175
149	On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biology Direct, 2007, 2, 14.	1.9	173
150	Computer-assisted dissection of rolling circle DNA replication. BioSystems, 1993, 30, 241-268.	0.9	172
151	Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nature Reviews Microbiology, 2015, 13, 105-115.	13.6	172
152	Novel Predicted RNA-Binding Domains Associated with the Translation Machinery. Journal of Molecular Evolution, 1999, 48, 291-302.	0.8	170
153	Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biology, 2014, 12, 66.	1.7	170
154	The enigmatic archaeal virosphere. Nature Reviews Microbiology, 2017, 15, 724-739.	13.6	169
155	Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Research, 2002, 30, 2212-2223.	6.5	167
156	Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Research, 2005, 33, 4626-4638.	6.5	165
157	Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biology Direct, 2007, 2, 33.	1.9	164
158	CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Frontiers in Genetics, 2014, 5, 102.	1,1	164
159	A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Science, 1999, 8, 1714-1719.	3.1	161
160	Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature, 2021, 593, 553-557.	13.7	161
161	A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes. PLoS Computational Biology, 2011, 7, e1002150.	1.5	160
162	Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nature Reviews Genetics, 2020, 21, 119-131.	7.7	159

#	Article	IF	CITATIONS
163	Birth and death of protein domains: a simple model of evolution explains power law behavior. BMC Evolutionary Biology, 2002, 2, 18.	3.2	158
164	CRISPR-Cas. RNA Biology, 2013, 10, 679-686.	1.5	158
165	The basic building blocks and evolution of CRISPR–Cas systems. Biochemical Society Transactions, 2013, 41, 1392-1400.	1.6	157
166	Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 2018, 163, 2295-2310.	0.9	157
167	Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biology, 2014, 12, 36.	1.7	156
168	Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nature Microbiology, 2020, 5, 1262-1270.	5.9	156
169	Hidden evolutionary complexity of Nucleo-Cytoplasmic Large DNA viruses of eukaryotes. Virology Journal, 2012, 9, 161.	1.4	155
170	Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, 597, 720-725.	13.7	155
171	Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology, 2014, 466-467, 38-52.	1.1	154
172	Distribution of Protein Folds in the Three Superkingdoms of Life. Genome Research, 1999, 9, 17-26.	2.4	154
173	Beyond complete genomes: from sequence to structure and function. Current Opinion in Structural Biology, 1998, 8, 355-363.	2.6	153
174	The Deep Archaeal Roots of Eukaryotes. Molecular Biology and Evolution, 2008, 25, 1619-1630.	3. 5	153
175	Evolution of protein domain promiscuity in eukaryotes. Genome Research, 2008, 18, 449-461.	2.4	153
176	Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.	0.9	153
177	Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell, 2020, 183, 1151-1161.	13.5	153
178	Constraints and plasticity in genome and molecular-phenome evolution. Nature Reviews Genetics, 2010, 11, 487-498.	7.7	152
179	The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science, 2021, 374, 57-65.	6.0	152
180	From complete genome sequence to â€~complete' understanding?. Trends in Biotechnology, 2010, 28, 398-406.	4.9	151

#	Article	IF	CITATIONS
181	The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing. MBio, 2016, 7, .	1.8	151
182	Origin of viruses: primordial replicators recruiting capsids from hosts. Nature Reviews Microbiology, 2019, 17, 449-458.	13.6	151
183	A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial recJ exonuclease. Trends in Biochemical Sciences, 1998, 23, 17-19.	3.7	149
184	A superfamily of metalloenzymes unifies phosphopentomutase and cofactorâ€independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Science, 1998, 7, 1829-1835.	3.1	148
185	Evolutionary primacy of sodium bioenergetics. Biology Direct, 2008, 3, 13.	1.9	144
186	Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biology Direct, 2012, 7, 46.	1.9	142
187	Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nature Reviews Genetics, 2015, 16, 184-192.	7.7	141
188	Eukaryotic translation elongation factor 1γ contains a glutathione transferase domain—Study of a diverse, ancient protein super family using motif search and structural modeling. Protein Science, 1994, 3, 2045-2055.	3.1	140
189	Co-evolution of primordial membranes and membrane proteins. Trends in Biochemical Sciences, 2009, 34, 206-215.	3.7	140
190	Divergence and Convergence in Enzyme Evolution. Journal of Biological Chemistry, 2012, 287, 21-28.	1.6	140
191	Evolution of the Large Nucleocytoplasmic DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism. Advances in Virus Research, 2019, 103, 167-202.	0.9	139
192	SnapShot: Class 2 CRISPR-Cas Systems. Cell, 2017, 168, 328-328.e1.	13.5	138
193	Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5307-E5316.	3.3	138
194	Prokaryotic genomes: the emerging paradigm of genome-based microbiology. Current Opinion in Genetics and Development, 1997, 7, 757-763.	1.5	136
195	Origin and Evolution of the Universal Genetic Code. Annual Review of Genetics, 2017, 51, 45-62.	3.2	132
196	Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biology and Evolution, 2017, 9, 2812-2825.	1.1	131
197	Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME Journal, 2014, 8, 1391-1402.	4.4	127
198	Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterialÂand archaeal plasmids. Nature Communications, 2019, 10, 3425.	5.8	127

#	Article	IF	CITATIONS
199	Horizontal Gene Transfer Can Rescue Prokaryotes from Muller's Ratchet: Benefit of DNA from Dead Cells and Population Subdivision. G3: Genes, Genomes, Genetics, 2014, 4, 325-339.	0.8	125
200	Theory of prokaryotic genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11399-11407.	3.3	125
201	Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Research, 1997, 25, 2430-2439.	6.5	124
202	Sequence — Evolution — Function. , 2003, , .		124
203	Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Research, 2016, 5, 1805.	0.8	123
204	Biological applications of the theory of birth-and-death processes. Briefings in Bioinformatics, 2006, 7, 70-85.	3.2	122
205	Trends in Prokaryotic Evolution Revealed by Comparison of Closely Related Bacterial and Archaeal Genomes. Journal of Bacteriology, 2009, 191, 65-73.	1.0	121
206	A P-loop-like motif in a widespread ATP pyrophosphatase domain: Implications for the evolution of sequence motifs and enzyme activity. Proteins: Structure, Function and Bioinformatics, 1994, 20, 347-355.	1.5	120
207	Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution. Biology Direct, 2010, 5, 31.	1.9	119
208	Evolution of microbes and viruses: a paradigm shift in evolutionary biology?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 119.	1.8	119
209	Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biology Direct, 2012, 7, 40.	1.9	119
210	Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140333.	1.8	118
211	Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nature Microbiology, 2018, 3, 461-469.	5.9	118
212	<i>Cressdnaviricota</i> : a Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Single-Stranded, Circular DNA Genomes. Journal of Virology, 2020, 94, .	1.5	118
213	Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150442.	1.8	117
214	Distinct Patterns of Expression and Evolution of Intronless and Intron-Containing Mammalian Genes. Molecular Biology and Evolution, 2010, 27, 1745-1749.	3.5	116
215	SnapShot: Class 1 CRISPR-Cas Systems. Cell, 2017, 168, 946-946.e1.	13.5	116
216	Viral Diversity Threshold for Adaptive Immunity in Prokaryotes. MBio, 2012, 3, e00456-12.	1.8	114

#	Article	IF	CITATIONS
217	Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. Nucleic Acids Research, 1994, 22, 4756-4767.	6.5	113
218	A new family of carbonâ€nitrogen hydrolases. Protein Science, 1994, 3, 1344-1346.	3.1	112
219	A community experiment with fully open and published peer review. Biology Direct, 2006, 1, 1.	1.9	111
220	TSG101 may be the prototype of a class of dominant negative ubiquitin regulators. Nature Genetics, 1997, 16, 330-331.	9.4	110
221	<i>Saccharomyces cerevisiae SMT4</i> Encodes an Evolutionarily Conserved Protease With a Role in Chromosome Condensation Regulation. Genetics, 2001, 158, 95-107.	1.2	109
222	Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biology Direct, 2015, 10, 20.	1.9	108
223	Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs. Journal of Virology, 2012, 86, 5562-5573.	1.5	107
224	On the Origin of Cells and Viruses. Annals of the New York Academy of Sciences, 2009, 1178, 47-64.	1.8	106
225	No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales. ISME Journal, 2015, 9, 2021-2027.	4.4	105
226	Evolution of doubleâ€stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Annals of the New York Academy of Sciences, 2015, 1341, 10-24.	1.8	105
227	Conserved sequence pattern in a wide variety of phosphoesterases. Protein Science, 1994, 3, 356-358.	3.1	104
228	Sequencing and analysis of bacterial genomes. Current Biology, 1996, 6, 404-416.	1.8	104
229	Orthologous Gene Clusters and Taxon Signature Genes for Viruses of Prokaryotes. Journal of Bacteriology, 2013, 195, 941-950.	1.0	104
230	Classify viruses â€" the gain is worth the pain. Nature, 2019, 566, 318-320.	13.7	104
231	Diversity and Evolution of Type IV pili Systems in Archaea. Frontiers in Microbiology, 2016, 7, 667.	1.5	103
232	Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol $\hat{l}\mu$ and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biology Direct, 2009, 4, 11.	1.9	102
233	Proteorhodopsin genes in giant viruses. Biology Direct, 2012, 7, 34.	1.9	102
234	Are There Laws of Genome Evolution?. PLoS Computational Biology, 2011, 7, e1002173.	1.5	101

#	Article	IF	Citations
235	Thousands of previously unknown phages discovered in whole-community human gut metagenomes. Microbiome, 2021, 9, 78.	4.9	101
236	Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biology, 2001, 2, research0033.1.	13.9	100
237	Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virology Journal, 2013, 10, 158.	1.4	99
238	Role of mRNA structure in the control of protein folding. Nucleic Acids Research, 2016, 44, 10898-10911.	6. 5	99
239	Endonuclease (R) subunits of type-l and type-III restriction-modification enzymes contain a helicase-like domain. FEBS Letters, 1991, 291, 277-281.	1.3	98
240	Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene, 2004, 335, 73-88.	1.0	98
241	Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, 59, 125-134.	0.8	98
242	Mimiviridae: clusters of orthologous genes, reconstruction of gene repertoire evolution and proposed expansion of the giant virus family. Virology Journal, 2013, 10, 106.	1.4	97
243	Substantial DNA methylation differences between two major neuronal subtypes in human brain. Nucleic Acids Research, 2016, 44, 2593-2612.	6. 5	97
244	The Dispersed Archaeal Eukaryome and the Complex Archaeal Ancestor of Eukaryotes. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016188-a016188.	2.3	96
245	A unique role for DNA (hydroxy)methylation in epigenetic regulation of human inhibitory neurons. Science Advances, 2018, 4, eaau6190.	4.7	92
246	Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biology, 2016, 14, 114.	1.7	91
247	Cancer-mutation network and the number and specificity of driver mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6010-E6019.	3.3	91
248	A family of ubiquitin-like proteins binds the ATPase domain of Hsp70-like Stch. FEBS Letters, 2000, 467, 348-355.	1.3	90
249	Evolutionary systems biology: links between gene evolution and function. Current Opinion in Biotechnology, 2006, 17, 481-487.	3.3	90
250	Nature and Intensity of Selection Pressure on CRISPR-Associated Genes. Journal of Bacteriology, 2012, 194, 1216-1225.	1.0	90
251	Evolution of RNA- and DNA-guided antivirus defense systems in prokaryotes and eukaryotes: common ancestry vs convergence. Biology Direct, 2017, 12, 5.	1.9	90
252	The cytidylyltransferase superfamily: Identification of the nucleotide-binding site and fold prediction. Proteins: Structure, Function and Bioinformatics, 1995, 22, 259-266.	1.5	89

#	Article	IF	Citations
253	The Biological Big Bang model for the major transitions in evolution. Biology Direct, 2007, 2, 21.	1.9	88
254	Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biology Direct, 2014, 9, 6.	1.9	88
255	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844.	1.0	87
256	CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biology Reports, 2009, 1, 95.	4.0	87
257	Compact RNA editors with small Cas13 proteins. Nature Biotechnology, 2022, 40, 194-197.	9.4	86
258	Inevitability of Genetic Parasites. Genome Biology and Evolution, 2016, 8, 2856-2869.	1.1	85
259	Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. MBio, 2019, 10, .	1.8	85
260	Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements. Journal of Virology, 2016, 90, 11043-11055.	1.5	84
261	Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Current Opinion in Microbiology, 2017, 38, 36-43.	2.3	82
262	The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology, 2016, 495, 185-196.	1.1	81
263	Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota. Current Biology, 2017, 27, 1362-1368.	1.8	81
264	Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features. Nature Communications, 2021, 12, 1044.	5.8	80
265	Contribution of phageâ€derived genomic islands to the virulence of facultative bacterial pathogens. Environmental Microbiology, 2013, 15, 307-312.	1.8	79
266	Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. Journal of Virology, 2018, 92, .	1.5	79
267	Comparative genomics of Archaea: how much have we learned in six years, and what's next?. Genome Biology, 2003, 4, 115.	13.9	78
268	A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biology, 2015, 13, 95.	1.7	78
269	Coupling immunity and programmed cell suicide in prokaryotes: Lifeâ€orâ€death choices. BioEssays, 2017, 39, 1-9.	1.2	78
270	Seeker: alignment-free identification of bacteriophage genomes by deep learning. Nucleic Acids Research, 2020, 48, e121-e121.	6.5	78

#	Article	IF	Citations
271	Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2199-2208.	0.8	78
272	Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes. Genome Biology and Evolution, 2009, 1, 99-113.	1.1	77
273	Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae. Journal of Virology, 2015, 89, 9348-9367.	1.5	77
274	Physical foundations of biological complexity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8678-E8687.	3.3	77
275	Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Reports, 2021, 34, 108873.	2.9	76
276	Self-synthesizing transposons: unexpected key players in the evolution of viruses and defense systems. Current Opinion in Microbiology, 2016, 31, 25-33.	2.3	74
277	The LUCA and its complex virome. Nature Reviews Microbiology, 2020, 18, 661-670.	13.6	74
278	Ancient Gene Capture and Recent Gene Loss Shape the Evolution of Orthopoxvirus-Host Interaction Genes. MBio, 2021, 12, e0149521.	1.8	74
279	CRISPR–Cas: Complex Functional Networks and Multiple Roles beyond Adaptive Immunity. Journal of Molecular Biology, 2019, 431, 3-20.	2.0	73
280	Deep Roots and Splendid Boughs of the Global Plant Virome. Annual Review of Phytopathology, 2020, 58, 23-53.	3.5	73
281	A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biology, 2021, 19, e3001430.	2.6	72
282	Mathematical Modeling of Evolution of Horizontally Transferred Genes. Molecular Biology and Evolution, 2005, 22, 1721-1732.	3.5	71
283	Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biology Direct, 2015, 10, 13.	1.9	71
284	Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nature Communications, 2019, 10, 5376.	5.8	71
285	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
286	Archaeology of Eukaryotic DNA Replication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012963-a012963.	2.3	70
287	Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 18678-18698.	1.6	70
288	The Incredible Expanding Ancestor of Eukaryotes. Cell, 2010, 140, 606-608.	13.5	69

#	Article	IF	CITATIONS
289	Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Scientific Reports, 2014, 4, 5347.	1.6	69
290	Intron-Dominated Genomes of Early Ancestors of Eukaryotes. Journal of Heredity, 2009, 100, 618-623.	1.0	68
291	Multiple evolutionary origins of giant viruses. F1000Research, 2018, 7, 1840.	0.8	68
292	Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Frontiers in Microbiology, 2014, 5, 354.	1.5	66
293	Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense. Nucleic Acids Research, 2020, 48, 8828-8847.	6.5	66
294	Sobemovirus genome appears to encode a serine protease related to cysteine proteases of picornaviruses. FEBS Letters, 1988, 236, 287-290.	1.3	65
295	Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virology Journal, 2018, 15, 67.	1.4	65
296	TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiology Letters, 2001, 197, 215-221.	0.7	64
297	The Origin at 150: is a new evolutionary synthesis in sight?. Trends in Genetics, 2009, 25, 473-475.	2.9	64
298	TPV1, the first virus isolated from the hyperthermophilic genus <i>Thermococcus</i> . Environmental Microbiology, 2012, 14, 503-516.	1.8	64
299	Pandoraviruses are highly derived phycodnaviruses. Biology Direct, 2013, 8, 25.	1.9	64
300	Differential Translation Tunes Uneven Production of Operon-Encoded Proteins. Cell Reports, 2013, 4, 938-944.	2.9	64
301	Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nature Communications, 2020, 11 , 3784.	5.8	64
302	The depths of virus exaptation. Current Opinion in Virology, 2018, 31, 1-8.	2.6	63
303	Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes. Briefings in Bioinformatics, 2004, 5, 131-149.	3.2	62
304	Evolution of alternative and constitutive regions of mammalian 5'UTRs. BMC Genomics, 2009, 10, 162.	1.2	62
305	Taming of the shrewd: novel eukaryotic genes from RNA viruses. BMC Biology, 2010, 8, 2.	1.7	62
306	How stands the Tree of Life a century and a half after The Origin?. Biology Direct, 2011, 6, 32.	1.9	62

#	Article	IF	Citations
307	The Vast, Conserved Mammalian lincRNome. PLoS Computational Biology, 2013, 9, e1002917.	1.5	62
308	Polintons, virophages and transpovirons: a tangled web linking viruses, transposons and immunity. Current Opinion in Virology, 2017, 25, 7-15.	2.6	62
309	The crAss-like Phage Group: How Metagenomics Reshaped the Human Virome. Trends in Microbiology, 2020, 28, 349-359.	3.5	62
310	A New Family of DNA Viruses Causing Disease in Crustaceans from Diverse Aquatic Biomes. MBio, 2020, 11, .	1.8	62
311	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	0.9	62
312	Common origins and host-dependent diversity of plant and animal viromes. Current Opinion in Virology, 2011, 1, 322-331.	2.6	61
313	Gene Frequency Distributions Reject a Neutral Model of Genome Evolution. Genome Biology and Evolution, 2013, 5, 233-242.	1.1	61
314	Phylogenomics of Cas4 family nucleases. BMC Evolutionary Biology, 2017, 17, 232.	3.2	61
315	Archaeal ancestors of eukaryotes: not so elusive any more. BMC Biology, 2015, 13, 84.	1.7	60
316	ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs. Journal of Bacteriology, 2016, 198, 797-807.	1.0	60
317	Myosin-driven transport network in plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1385-E1394.	3.3	59
318	Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. Biology Direct, 2017, 12, 31.	1.9	59
319	Unique structure and function of viral rhodopsins. Nature Communications, 2019, 10, 4939.	5.8	59
320	Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor elFâ€2B subunits revealed by analysis of conserved sequence motifs. Protein Science, 1995, 4, 1608-1617.	3.1	58
321	A novel family of P-loop NTPases with an unusual phyletic distribution and transmembrane segments inserted within the NTPase domain. Genome Biology, 2004, 5, R30.	13.9	58
322	On the Origin of DNA Genomes: Evolution of the Division of Labor between Template and Catalyst in Model Replicator Systems. PLoS Computational Biology, 2011, 7, e1002024.	1.5	57
323	Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science, 2021, 372, .	6.0	55
324	Horizontal gene transfer: the path to maturity. Molecular Microbiology, 2003, 50, 725-727.	1.2	53

#	Article	IF	CITATIONS
325	Evolution of complexity in the viral world: The dawn of a new vision. Virus Research, 2006, 117, 1-4.	1.1	53
326	Viruses Defined by the Position of the Virosphere within the Replicator Space. Microbiology and Molecular Biology Reviews, 2021, 85, e0019320.	2.9	53
327	The fundamental units, processes and patterns of evolution, and the Tree of Life conundrum. Biology Direct, 2009, 4, 33.	1.9	52
328	A new family of hybrid virophages from an animal gut metagenome. Biology Direct, 2015, 10, 19.	1.9	52
329	On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. MBio, 2017, 8, .	1.8	52
330	Autogenous translation regulation by Escherichia coli ATP ase Sec Amay be mediated by an intrinsic RNA helicase activity of this protein. FEBS Letters, 1992, 298, 6-8.	1.3	51
331	Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code. Life, 2017, 7, 22.	1.1	51
332	Virology: Gulliver among the Lilliputians. Current Biology, 2005, 15, R167-R169.	1.8	50
333	Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases. Biology Direct, 2006, 1, 39.	1.9	50
334	Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nature Communications, 2019, 10, 5204.	5.8	50
335	The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biology, 2020, 18, 61.	1.7	50
336	ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes. Nucleic Acids Research, 2009, 37, D448-D454.	6.5	49
337	Does the central dogma still stand?. Biology Direct, 2012, 7, 27.	1.9	49
338	Coupling Between Protein Level Selection and Codon Usage Optimization in the Evolution of Bacteria and Archaea. MBio, 2014, 5, e00956-14.	1.8	49
339	Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles, 2014, 18, 877-893.	0.9	48
340	Incorporating Machine Learning into Established Bioinformatics Frameworks. International Journal of Molecular Sciences, 2021, 22, 2903.	1.8	48
341	Gene family evolution: an in-depth theoretical and simulation analysis of non-linear birth-death-innovation models. BMC Evolutionary Biology, 2004, 4, 32.	3.2	47
342	Whence genes in pieces: reconstruction of the exon–intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. Wiley Interdisciplinary Reviews RNA, 2013, 4, 93-105.	3.2	47

#	Article	IF	Citations
343	Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus–host coevolution. Molecular BioSystems, 2015, 11, 20-27.	2.9	47
344	The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution?. Microbiology and Molecular Biology Reviews, 2021, 85, e0005321.	2.9	47
345	Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biology, 2022, 20, e3001481.	2.6	47
346	The Structure and Evolution of Penelope in the virilis Species Group of Drosophila: An Ancient Lineage of Retroelements. Journal of Molecular Evolution, 2001, 52, 445-456.	0.8	46
347	Reconstruction of the evolution of microbial defense systems. BMC Evolutionary Biology, 2017, 17, 94.	3.2	46
348	Grammar of protein domain architectures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3636-3645.	3.3	46
349	Seeing the Tree of Life behind the phylogenetic forest. BMC Biology, 2013, 11, 46.	1.7	45
350	Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 71.	2.0	45
351	The complex domain architecture of SAMD9 family proteins, predicted STAND-like NTPases, suggests new links to inflammation and apoptosis. Biology Direct, 2017, 12, 13.	1.9	45
352	Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. RNA Biology, 2019, 16, 435-448.	1.5	45
353	Translational coupling via termination-reinitiation in archaea and bacteria. Nature Communications, 2019, 10, 4006.	5 . 8	45
354	Virus-host arms race at the joint origin of multicellularity and programmed cell death. Cell Cycle, 2014, 13, 3083-3088.	1.3	44
355	Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biology Direct, 2015, 10, 12.	1.9	44
356	Disentangling the effects of selection and loss bias on gene dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5616-E5624.	3.3	44
357	CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Research, 2021, 49, e20-e20.	6.5	44
358	A putative FADâ€binding domain in a distinct group of oxidases including a protein involved in plant development. Protein Science, 1995, 4, 1243-1244.	3.1	43
359	Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions. Scientific Reports, 2017, 7, 12422.	1.6	43
360	The healthy human virome: from virus–host symbiosis to disease. Current Opinion in Virology, 2021, 47, 86-94.	2.6	43

#	Article	IF	CITATIONS
361	The second cholera toxin, Zot, and its plasmid-encoded and phage-encoded homologues constitute a group of putative ATPases with an altered purine NTP-binding motif. FEBS Letters, 1992, 312, 3-6.	1.3	42
362	The Turbulent Network Dynamics of Microbial Evolution and the Statistical Tree of Life. Journal of Molecular Evolution, 2015, 80, 244-250.	0.8	42
363	Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection. BMC Biology, 2015, 13, 20.	1.7	42
364	Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. Journal of Bacteriology, 2018, 200, .	1.0	41
365	Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. MBio, 2019, 10, .	1.8	41
366	Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages. Frontiers in Microbiology, 2019, 10, 703.	1.5	41
367	Predator Dormancy is a Stable Adaptive Strategy due to Parrondo's Paradox. Advanced Science, 2020, 7, 1901559.	5.6	41
368	A highly conserved family of inactivated archaeal B family DNA polymerases. Biology Direct, 2008, 3, 32.	1.9	40
369	Evolution at protein ends: major contribution of alternative transcription initiation and termination to the transcriptome and proteome diversity in mammals. Nucleic Acids Research, 2014, 42, 7132-7144.	6.5	40
370	The logic of virus evolution. Cell Host and Microbe, 2022, 30, 917-929.	5.1	40
371	Aldolases of the DhnA family: a possible solution to the problem of pentose and hexose biosynthesis in archaea. FEMS Microbiology Letters, 2000, 183, 259-264.	0.7	39
372	Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota". Biology Direct, 2007, 2, 38.	1.9	39
373	Two fundamentally different classes of microbial genes. Nature Microbiology, 2017, 2, 16208.	5.9	39
374	Metaviromics: a tectonic shift in understanding virus evolution. Virus Research, 2018, 246, A1-A3.	1.1	39
375	Sequence analysis of an exceptionally conserved operon suggests enzymes for a new link between histidine and purine biosynthesis. Molecular Microbiology, 1997, 24, 443-445.	1.2	38
376	Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica, 2000, 108, 25-34.	0.5	38
377	Stability along with Extreme Variability in Core Genome Evolution. Genome Biology and Evolution, 2013, 5, 1393-1402.	1.1	38
378	Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6033-6037.	3.3	38

#	Article	IF	Citations
379	ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation. Nucleic Acids Research, 2017, 45, D210-D218.	6.5	38
380	Integrated mobile genetic elements in Thaumarchaeota. Environmental Microbiology, 2019, 21, 2056-2078.	1.8	38
381	Mutation–selection balance and compensatory mechanisms in tumour evolution. Nature Reviews Genetics, 2021, 22, 251-262.	7.7	38
382	Genomics and biology of Rudiviruses, a model for the study of virus–host interactions in Archaea. Biochemical Society Transactions, 2013, 41, 443-450.	1.6	37
383	A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide. Human Molecular Genetics, 2014, 23, 4801-4813.	1.4	37
384	Multiple Layers of Chimerism in a Single-Stranded DNA Virus Discovered by Deep Sequencing. Genome Biology and Evolution, 2015, 7, 993-1001.	1.1	37
385	Classification of prokaryotic genetic replicators: between selfishness and altruism. Annals of the New York Academy of Sciences, 2015, 1341, 96-105.	1.8	37
386	The meaning of biological information. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150065.	1.6	37
387	Multicopy suppresors, mssA and mssB, of an smbA mutation of Escherichia coli. Molecular Genetics and Genomics, 1994, 243, 9-16.	2.4	36
388	Evolution of DNA packaging in gene transfer agents. Virus Evolution, 2021, 7, veab015.	2.2	36
389	SpoU protein ofEscherichia colibelongs to a new family of putative rRNA methylases. Nucleic Acids Research, 1993, 21, 5519-5519.	6.5	35
390	Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nature Communications, 2016, 7, 13570.	5.8	35
391	Towards functional characterization of archaeal genomic dark matter. Biochemical Society Transactions, 2019, 47, 389-398.	1.6	35
392	Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape. MBio, 2022, 13, e0013522.	1.8	35
393	MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evolutionary Biology, 2014, 14, 237.	3.2	34
394	Germline viral "fossils―guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Scientific Reports, 2016, 6, 28965.	1.6	34
395	Response to Comment on "RNA-guided DNA insertion with CRISPR-associated transposases― Science, 2020, 368, .	6.0	34
396	Cargo Genes of Tn <i>7</i> -Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. MBio, 2021, 12, e0293821.	1.8	34

#	Article	IF	CITATIONS
397	Unexpected sequence similarity between nucleosidases and phosphoribosyltransferases of different specificity. Protein Science, 1994, 3, 1081-1088.	3.1	33
398	The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life. Biology Direct, 2007, 2, 15.	1.9	33
399	Temporal Regulation of Gene Expression of the Thermus thermophilus Bacteriophage P23-45. Journal of Molecular Biology, 2011, 405, 125-142.	2.0	33
400	Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Research, 2016, 44, gkw821.	6.5	33
401	Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma. ACS Chemical Biology, 2018, 13, 309-312.	1.6	33
402	Viral rhodopsins 1 are \hat{A} an unique family of light-gated cation channels. Nature Communications, 2020, $11,5707.$	5.8	33
403	Evolution of Microbial Genomics: Conceptual Shifts over a Quarter Century. Trends in Microbiology, 2021, 29, 582-592.	3.5	33
404	A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Research, 2021, 49, 10328-10346.	6.5	33
405	A Non-Adaptationist Perspective on Evolution of Genomic Complexity or the Continued Dethroning of Man. Cell Cycle, 2004, 3, 278-283.	1.3	32
406	Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. Genome Biology and Evolution, 2016, 8, 375-386.	1.1	32
407	Toward a theory of evolution as multilevel learning. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	32
408	Purifying and positive selection in the evolution of stop codons. Scientific Reports, 2018, 8, 9260.	1.6	31
409	Mapping CRISPR spaceromes reveals vast host-specific viromes of prokaryotes. Communications Biology, 2020, 3, 321.	2.0	31
410	Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms. Biology Direct, 2016, 11, 9.	1.9	30
411	Two domains of superfamily I helicases may exist as separate proteins. Protein Science, 1996, 5, 178-180.	3.1	29
412	Carl Woese's vision of cellular evolution and the domains of life. RNA Biology, 2014, 11, 197-204.	1.5	29
413	Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evolutionary Biology, 2015, 15, 43.	3.2	29
414	Why the Central Dogma: on the nature of the great biological exclusion principle. Biology Direct, 2015, 10, 52.	1.9	29

#	Article	IF	Citations
415	A network perspective on the virus world. Communicative and Integrative Biology, 2017, 10, e1296614.	0.6	29
416	Structure and function of virion RNA polymerase of a crAss-like phage. Nature, 2021, 589, 306-309.	13.7	29
417	Ultrastructural localization and epitope mapping of the methyltransferase-like and helicase-like proteins of Beet yellows virus. Journal of General Virology, 2001, 82, 1983-1994.	1.3	28
418	Independent Evolution of Heavy Metal-Associated Domains in Copper Chaperones and Copper-Transporting ATPases. Journal of Molecular Evolution, 2001, 53, 622-633.	0.8	27
419	Evolutionary Dynamics of Introns in Plastid-Derived Genes in Plants: Saturation Nearly Reached but Slow Intron Gain Continues. Molecular Biology and Evolution, 2007, 25, 111-119.	3.5	27
420	Comparison of Phylogenetic Trees and Search for a Central Trend in the "Forest of Life― Journal of Computational Biology, 2011, 18, 917-924.	0.8	27
421	Decrease of mRNA Editing after Spinal Cord Injury is Caused by Down-regulation of ADAR2 that is Triggered by Inflammatory Response. Scientific Reports, 2015, 5, 12615.	1.6	27
422	A unique insert in the genomes of high-risk human papillomaviruses with a predicted dual role in conferring oncogenic risk. F1000Research, 2019, 8, 1000.	0.8	27
423	Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Communications Biology, 2021, 4, 1343.	2.0	27
424	Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers. Scientific Reports, 2016, 6, 38133.	1.6	26
425	Towards physical principles of biological evolution. Physica Scripta, 2018, 93, 043001.	1.2	26
426	CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biology and Philosophy, 2019, 34, 9.	0.7	26
427	Cellular homologs of the double jelly-roll major capsid proteins clarify the origins of an ancient virus kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
428	Thermodynamics of evolution and the origin of life. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	26
429	An insect picornavirus may have genome organization similar to that of caliciviruses. FEBS Letters, 1992, 297, 81-86.	1.3	25
430	Evolutionary switches between two serine codon sets are driven by selection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13109-13113.	3.3	25
431	A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Molecular Cell, 2018, 72, 700-714.e8.	4.5	25
432	The complexity of the virus world. Nature Reviews Microbiology, 2009, 7, 250-250.	13.6	24

#	Article	IF	Citations
433	Viruses know more than one way to don a cap. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3283-3284.	3.3	24
434	Homologous Capsid Proteins Testify to the Common Ancestry of Retroviruses, Caulimoviruses, Pseudoviruses, and Metaviruses. Journal of Virology, 2017, 91, .	1.5	24
435	dlg–R proteins: modified guanylate kinases. Nature Genetics, 1992, 2, 256-257.	9.4	23
436	Bacterial and bacteriophage protein phosphatases. Molecular Microbiology, 1993, 8, 785-786.	1.2	23
437	The origins of cellular life. Antonie Van Leeuwenhoek, 2014, 106, 27-41.	0.7	23
438	Adaptation of mRNA structure to control protein folding. RNA Biology, 2017, 14, 1649-1654.	1.5	23
439	Criticality in tumor evolution and clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11101-E11110.	3.3	23
440	Phage lysisâ€lysogeny switches and programmed cell death: Danse macabre. BioEssays, 2020, 42, e2000114.	1.2	23
441	Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea. MBio, 2020, 11, .	1.8	23
442	Interplay between DNA damage repair and apoptosis shapes cancer evolution through aneuploidy and microsatellite instability. Nature Communications, 2020, 11, 1234.	5.8	23
443	Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process?. International Journal of Molecular Sciences, 2022, 23, 521.	1.8	23
444	Related domains in yeast tRNA ligase, bacteriophage T4 polynucleotide kinase and RNA ligase, and mammalian myelin 2',3/-cyclic nucleotide phosphohydrolase revealed by amino acid squence comparison. FEBS Letters, 1990, 268, 231-234.	1.3	22
445	An RNA-making reactor for the origin of life. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9105-9106.	3.3	22
446	Evolution of a major virion protein of the giant pandoraviruses from an inactivated bacterial glycoside hydrolase. Virus Evolution, 2020, 6, veaa059.	2.2	22
447	<i>Adnaviria</i> : a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. Journal of Virology, 2021, 95, e0067321.	1.5	22
448	Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo's paradox. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115145119.	3.3	22
449	Plasmodium falciparum protein associated with the invasion junction contains a conserved oxidoreductase domain. Molecular Microbiology, 1995, 15, 463-471.	1.2	21
450	Universal Pacemaker of Genome Evolution in Animals and Fungi and Variation of Evolutionary Rates in Diverse Organisms. Genome Biology and Evolution, 2014, 6, 1268-1278.	1.1	21

#	Article	IF	CITATIONS
451	Anti-CRISPRs on the march. Science, 2018, 362, 156-157.	6.0	21
452	Systematic prediction of functionally linked genes in bacterial and archaeal genomes. Nature Protocols, 2019, 14, 3013-3031.	5.5	21
453	Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of <i>Acidithiobacillia</i> . CRISPR Journal, 2021, 4, 656-672.	1.4	21
454	A non-adaptationist perspective on evolution of genomic complexity or the continued dethroning of man. Cell Cycle, 2004, 3, 280-5.	1.3	21
455	Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nature Microbiology, 2022, 7, 962-973.	5.9	21
456	Searching for FLASH domains. Nature, 1999, 401, 662-662.	13.7	20
457	Deep phylogeny of cancer drivers and compensatory mutations. Communications Biology, 2020, 3, 551.	2.0	20
458	Structural Basis for a Dual Function ATP Grasp Ligase That Installs Single and Bicyclic ï‰-Ester Macrocycles in a New Multicore RiPP Natural Product. Journal of the American Chemical Society, 2021, 143, 8056-8068.	6.6	20
459	Allosteric Activation of SARS-CoV-2 RNA-Dependent RNA Polymerase by Remdesivir Triphosphate and Other Phosphorylated Nucleotides. MBio, 2021, 12, e0142321.	1.8	20
460	A three-organelle complex made by wrappER contacts with peroxisomes and mitochondria responds to liver lipid flux changes. Journal of Cell Science, 2022, 135 , .	1.2	20
461	Conservation and Evolution of the Sporulation Gene Set in Diverse Members of the <i>Firmicutes</i> Journal of Bacteriology, 2022, 204, .	1.0	20
462	Genome replication/expression strategies of positive-strand RNA viruses: A simple version of a combinatorial classification and prediction of new strategies. Virus Genes, 1991, 5, 273-281.	0.7	19
463	Eukaryotic RNAse H shares a conserved domain with caulimovirus proteins that facilitate translation of polycistronic RNA. Nucleic Acids Research, 1994, 22, 4163-4166.	6.5	19
464	Ataxin-2, global regulators and bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. Journal of Molecular Medicine, 1997, 76, 3-5.	1.7	19
465	Expanding networks of RNA virus evolution. BMC Biology, 2012, 10, 54.	1.7	19
466	Evolution of Genome Architecture in Archaea: Spontaneous Generation of a New Chromosome in Haloferax volcanii. Molecular Biology and Evolution, 2018, 35, 1855-1868.	3.5	19
467	Extending the Lifespan of Multicellular Organisms via Periodic and Stochastic Intercellular Competition. Physical Review Letters, 2022, 128, .	2.9	19
468	The common ancestry of life. Biology Direct, 2010, 5, 64.	1.9	18

#	Article	IF	CITATIONS
469	A primase subunit essential for efficient primer synthesis by an archaeal eukaryotic-type primase. Nature Communications, 2015, 6, 7300.	5.8	18
470	On the feasibility of saltational evolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21068-21075.	3.3	18
471	Multiplicative fitness, rapid haplotype discovery, and fitness decay explain evolution of human MHC. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14098-14104.	3.3	18
472	In silico learning of tumor evolution through mutational time series. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9501-9510.	3.3	18
473	Reply to Holmes and Duchêne, "Can Sequence Phylogenies Safely Infer the Origin of the Global Virome?― Deep Phylogenetic Analysis of RNA Viruses Is Highly Challenging but Not Meaningless. MBio, 2019, 10, .	1.8	18
474	New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environmental Microbiology, 2019, 21, 2002-2014.	1.8	18
475	Evolution of regulatory signatures in primate cortical neurons at cell-type resolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28422-28432.	3.3	18
476	CRISPR Arrays Away from <i>cas</i> Genes. CRISPR Journal, 2020, 3, 535-549.	1.4	18
477	Cellular origin of the viral capsid-like bacterial microcompartments. Biology Direct, 2017, 12, 25.	1.9	17
478	Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR Journal, 2020, 3, 156-163.	1.4	17
479	Towards a postmodern synthesis of evolutionary biology. Cell Cycle, 2009, 8, 799-800.	1.3	16
480	Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease. Biology Direct, 2015, 10, 65.	1.9	16
481	Prediction of the incubation period for COVID-19 and future virus disease outbreaks. BMC Biology, 2020, 18, 186.	1.7	16
482	P53 Gain-of-Function: Tumor Biology and Bioinformatics Come Together. Cell Cycle, 2005, 4, 686-688.	1.3	14
483	Defining Life: An Exercise in Semantics or A Route to Biological Insights?. Journal of Biomolecular Structure and Dynamics, 2012, 29, 603-605.	2.0	14
484	Proteomic and genomic signatures of repeat instability in cancer and adjacent normal tissues. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16987-16996.	3.3	14
485	Origin of programmed cell death from antiviral defense?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16167-16169.	3.3	14
486	Nonessential Ribosomal Proteins in Bacteria and Archaea Identified Using Clusters of Orthologous Genes. Journal of Bacteriology, 2021, 203, .	1.0	14

#	Article	IF	Citations
487	Structure-based insights into evolution of rhodopsins. Communications Biology, 2021, 4, 821.	2.0	14
488	ViroidDB: a database of viroids and viroid-like circular RNAs. Nucleic Acids Research, 2022, 50, D432-D438.	6.5	14
489	Tale of two serines. Nature, 1989, 338, 467-468.	13.7	13
490	Comparative Genome Analysis. Methods of Biochemical Analysis, 2002, 43, 359-392.	0.2	13
491	The wonder world of microbial viruses. Expert Review of Anti-Infective Therapy, 2010, 8, 1097-1099.	2.0	13
492	Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15777-15778.	3.3	13
493	Fusion of a superfamily 1 helicase and an inactivated DNA polymerase is a signature of common evolutionary history of Polintons, polinton-like viruses, Tlr1 transposons and transpovirons. Virus Evolution, 2016, 2, vew019.	2.2	13
494	Evolvability of an Optimal Recombination Rate. Genome Biology and Evolution, 2016, 8, 70-77.	1.1	13
495	Unexpected connections between type VI-B CRISPR-Cas systems, bacterial natural competence, ubiquitin signaling network and DNA modification through a distinct family of membrane proteins. FEMS Microbiology Letters, 2019, 366, .	0.7	13
496	A parasite's parasite saves host's neighbours. Nature, 2016, 540, 204-205.	13.7	12
497	Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea. MBio, 2017, 8, .	1.8	12
498	Stable coevolutionary regimes for genetic parasites and their hosts: you must differ to coevolve. Biology Direct, 2018, 13, 27.	1.9	12
499	Selection for Reducing Energy Cost of Protein Production Drives the GC Content and Amino Acid Composition Bias in Gene Transfer Agents. MBio, 2020, 11 , .	1.8	12
500	CRISPRclassify: Repeat-Based Classification of CRISPR Loci. CRISPR Journal, 2021, 4, 558-574.	1.4	12
501	Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Frontiers in Molecular Biosciences, 2022, 9, 821197.	1.6	12
502	Corrigendum to \tilde{A} $\hat{+}$ \hat{A} $\hat{=}$ \hat{A} $\hat{-}$ Novel domains of the prokaryotic two-component signal transduction systems \tilde{A} $\hat{+}$ \hat{A} $\hat{-}$ FEMS Microbiology Letters, 2001, 204, 213-214.	0.7	11
503	Comparative genomic analysis of evolutionarily conserved but functionally uncharacterized membrane proteins in archaea: Prediction of novel components of secretion, membrane remodeling and glycosylation systems. Biochimie, 2015, 118, 302-312.	1.3	11
504	Extreme Deviations from Expected Evolutionary Rates in Archaeal Protein Families. Genome Biology and Evolution, 2017, 9, 2791-2811.	1.1	11

#	Article	IF	Citations
505	Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea. MBio, 2019, 10, .	1.8	11
506	Predicted highly derived class 1 CRISPR-Cas system in Haloarchaea containing diverged Cas5 and Cas7 homologs but no CRISPR array. FEMS Microbiology Letters, 2019, 366, .	0.7	10
507	An alternating active-dormitive strategy enables disadvantaged prey to outcompete the perennially active prey through Parrondo's paradox. BMC Biology, 2021, 19, 168.	1.7	10
508	Fishing for phages in metagenomes: what do we catch, what do we miss?. Current Opinion in Virology, 2021, 49, 142-150.	2.6	10
509	A unique insert in the genomes of high-risk human papillomaviruses with a predicted dual role in conferring oncogenic risk. F1000Research, 2019, 8, 1000.	0.8	10
510	Dependencies among Editing Sites in Serotonin 2C Receptor mRNA. PLoS Computational Biology, 2012, 8, e1002663.	1.5	9
511	Impairment of translation in neurons as a putative causative factor for autism. Biology Direct, 2014, 9, 16.	1.9	9
512	Selection and Genome Plasticity as the Key Factors in the Evolution of Bacteria. Physical Review X , 2019, 9 , .	2.8	9
513	Evolution of human respiratory virus epidemics. F1000Research, 2021, 10, 447.	0.8	9
514	Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Research, 2021, 10, 315.	0.8	9
515	Viroids and Viroid-like Circular RNAs: Do They Descend from Primordial Replicators?. Life, 2022, 12, 103.	1.1	9
516	Phylogenomic analysis of the diversity of graspetides and proteins involved in their biosynthesis. Biology Direct, 2022, 17, 7.	1.9	9
517	Human pathogenic RNA viruses establish noncompeting lineages by occupying independent niches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
518	Paralogs and mutational robustness linked through transcriptional reprogramming. BioEssays, 2005, 27, 865-868.	1.2	8
519	Chance and necessity in cellular response to challenge. Molecular Systems Biology, 2007, 3, 107.	3.2	8
520	Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis. Biology Direct, 2014, 9, 13.	1.9	8
521	Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, "Methanonatronarchaeia― Genes, 2018, 9, 28.	1.0	8
522	A novel group of negative-sense RNA viruses associated with epizootics in managed and free-ranging freshwater turtles in Florida, USA. PLoS Pathogens, 2022, 18, e1010258.	2.1	8

#	Article	IF	CITATIONS
523	Chordopoxvirus protein F12 implicated in enveloped virion morphogenesis is an inactivated DNA polymerase. Biology Direct, 2014, 9, 22.	1.9	7
524	Open questions: CRISPR biology. BMC Biology, 2018, 16, 95.	1.7	7
525	How genetic parasites persist despite the purge of natural selection. Europhysics Letters, 2018, 122, 58001.	0.7	7
526	Reply to â€~Evolutionary placement of Methanonatronarchaeia'. Nature Microbiology, 2019, 4, 560-561.	5.9	7
527	Crossing fitness valleys via double substitutions within codons. BMC Biology, 2019, 17, 105.	1.7	7
528	Phages build anti-defence barriers. Nature Microbiology, 2020, 5, 8-9.	5.9	7
529	Evolution in the weak-mutation limit: Stasis periods punctuated by fast transitions between saddle points on the fitness landscape. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
530	Substantial impact of post-vaccination contacts on cumulative infections during viral epidemics. F1000Research, 2021, 10, 315.	0.8	7
531	Comparing Microbial Genomes: How the Gene Set Determines the Lifestyle. , 0, , 91-108.		7
532	The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Research, 2022, 50, 4601-4615.	6.5	7
533	A Novel Flavi-like Virus in Alfalfa (Medicago sativa L.) Crops along the Snake River Valley. Viruses, 2022, 14, 1320.	1.5	7
534	Winnowing Sequences from a Database Search. Journal of Computational Biology, 2000, 7, 293-302.	0.8	6
535	Bioinformatics Meets Virology: The European Virus Bioinformatics Center's Second Annual Meeting. Viruses, 2018, 10, 256.	1.5	6
536	Hunting for Treasure Chests in Microbial Defense Islands. Molecular Cell, 2018, 70, 761-762.	4.5	6
537	Game-Theoretical Modeling of Interviral Conflicts Mediated by Mini-CRISPR Arrays. Frontiers in Microbiology, 2020, 11, 381.	1.5	6
538	Human choroideremia protein contains a FAD-binding domain. Nature Genetics, 1996, 12, 237-239.	9.4	5
539	The double-edged sword of Lamarck. Physics of Life Reviews, 2014, 11, 141-143.	1.5	5
540	Environmental microbiology and metagenomics: the Brave New World is here, what's next?. Environmental Microbiology, 2018, 20, 4210-4212.	1.8	5

#	Article	IF	CITATIONS
541	Estimation of universal and taxon-specific parameters of prokaryotic genome evolution. PLoS ONE, 2018, 13, e0195571.	1.1	5
542	Assessment of assumptions underlying models of prokaryotic pangenome evolution. BMC Biology, 2021, 19, 27.	1.7	5
543	Evolution of human respiratory virus epidemics. F1000Research, 2021, 10, 447.	0.8	5
544	Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life. Methods in Molecular Biology, 2019, 1910, 241-269.	0.4	5
545	Uncertainty-aware and interpretable evaluation of Cas9–gRNA and Cas12a–gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning. Nucleic Acids Research, 2022, 50, e11-e11.	6.5	5
546	Genomic microbiology: Right on target?. Nature Biotechnology, 1998, 16, 821-822.	9.4	4
547	Allele fixation probability in a Moran model with fluctuating fitness landscapes. Physical Review E, 2019, 99, 022407.	0.8	4
548	Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes. BMC Biology, 2020, 18, 159.	1.7	4
549	New variants of known folds: do they bring new biology?. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1226-1229.	0.7	3
550	A census of \hat{l}_{\pm} -helical membrane proteins in double-stranded DNA viruses infecting bacteria and archaea. BMC Bioinformatics, 2015, 16, 380.	1.2	3
551	Key role of recombination in evolutionary processes with migration between two habitats. Physical Review E, 2019, 100, 030401.	0.8	3
552	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily., 2001, 43, 134.		3
553	Genome as a stochastic evolutionary machine. Physics of Life Reviews, 2013, 10, 341-343.	1.5	2
554	Bacterial genes in eukaryotes: Relatively rare but real and important (<scp>C</scp> omment on) Tj ETQq0 0 0 rg	BT ∤Qverlo	ck ₂ 10 Tf 50 22
555	Horizontal transfer beyond genes: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15865-15866.	3.3	2
556	Identification of combinations of somatic mutations that predict cancer survival and immunotherapy benefit. NAR Cancer, 2021, 3, zcab017.	1.6	2
557	Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily., 2001, 43, 134.		2
558	Thermodynamic selection: mechanisms and scenarios. New Journal of Physics, 2022, 24, 053006.	1.2	2

#	Article	IF	Citations
559	A putative RNA-interference-based immune system in prokaryotes: the epitome of prokaryotic genomic diversity., 0,, 39-64.		1
560	Origin and evolution of the genetic code: The universal enigma. IUBMB Life, 2009, 61, spcone-spcone.	1.5	1
561	Elaborate security TRAINing to fight against expression of genomic junk. Cell Cycle, 2013, 12, 553-554.	1.3	1
562	Lamarckian or not, CRISPR-Cas is an elaborate engine of directed evolution. Biology and Philosophy, 2019, 34, 1.	0.7	1
563	Reply to Hedrick and Klitz: High haplotype discovery rate in the HLA locus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23388-23389.	3.3	1
564	No waves of intelligent design. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19639-19640.	3.3	1
565	Defense Against Viruses and Other Genetic Parasites in Prokaryotes. , 2021, , 606-616.		1
566	A Unique Gene Module in Thermococcales Archaea Centered on a Hypervariable Protein Containing Immunoglobulin Domains. Frontiers in Microbiology, 2021, 12, 721392.	1.5	1
567	Conflict-driven evolution., 2021,, 77-96.		1
568	A flea has smaller fleas that on him prey: giant viruses, their parasites and evolutionary networks. Future Virology, 2013, 8, 937-939.	0.9	0
569	Horizontal Gene Transfer and Prokaryotic Genome Evolution. , 2014, , 319-338.		0
570	The Greater Virus World and Its Evolution. , 2021, , 38-46.		0
571	Analysis of Finite Population Evolution Models Using a Moment Closure Approximation. Journal of the Physical Society of Japan, 2021, 90, 014801.	0.7	O
572	THE EMERGING GENERALIZATIONS OF PROKARYOTIC GENOMICS., 2008,,.		0
573	Universal genome cutters: from selfish genetic elements to antivirus defence and genome editing tools. Biochemist, 2016, 38, 4-9.	0.2	O
574	Fixation Probability of a Mutant in the Wright–Fisher Model under Strong Selection and Fluctuating Fitness Landscape. Journal of the Physical Society of Japan, 2020, 89, 104802.	0.7	0
575	Erratum for Benler et al., "Cargo Genes of Tn <i>7</i> -Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes†MBio, 2022, , e0025722.	1.8	0
576	Gene-influx-driven evolution. Physical Review E, 2022, 106, .	0.8	0