R M Gamini Rajapakse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9069076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Significance of Mg-hardness and fluoride in drinking water on chronic kidney disease of unknown etiology in Monaragala, Sri Lanka. Environmental Research, 2022, 203, 111779.	7.5	29
2	Anti-stain and durable superhydrophobic/antistatic dual functionality surface for fabric materials based on F-ZnO/TiO2 composite. Journal of Sol-Gel Science and Technology, 2022, 101, 529-538.	2.4	5
3	Implementing the donor–acceptor approach in electronically conducting copolymers <i>via</i> electropolymerization. RSC Advances, 2022, 12, 12089-12115.	3.6	13
4	Low-cost ternary composite of graphite, kaolinite and cement as a potential working electrode for general electrochemical applications. Chemical Papers, 2022, 76, 6653-6658.	2.2	6
5	A binderâ€free composite of graphite and kaolinite as a stable working electrode for general electrochemical applications. Electrochemical Science Advances, 2021, 1, e2100003.	2.8	6
6	Synthesis of Curcumin Nanoparticles from Raw Turmeric Rhizome. ACS Omega, 2021, 6, 8246-8252.	3.5	39
7	Evaluation of cell compatibility of surfaces patterned with hydroxyapatite nanopowders on Ti surfaces. Bulletin of Materials Science, 2021, 44, 1.	1.7	1
8	Noyes-Whitney Dissolution Model-Based pH-Sensitive Slow Release of Paclitaxel (Taxol) from Human Hair-Derived Keratin Microparticle Carriers. BioMed Research International, 2021, 2021, 1-8.	1.9	9
9	Formulation of Iron Oxide and Oxy-hydroxide Nanoparticles from Ilmenite Sand through a Low-Temperature Process. ACS Omega, 2021, 6, 17824-17830.	3.5	4
10	Impact of 4-Tertiary-butylpyridine in Imidazolium Iodide/Triiodide Redox Couple-Based Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 9393-9401.	5.1	2
11	Effect of morphology on larvicidal activity of chemically synthesized zinc oxide nanoparticles against mosquito vectors. RSC Advances, 2021, 11, 8857-8866.	3.6	15
12	Surfactant/Citrate Assisted Synthesis of Calcium Carbonate Nanostructures from Natural Calcite. Lecture Notes in Civil Engineering, 2021, , 291-301.	0.4	0
13	Investigation on the Synthesis of PCC Nanostructures using a Spinning Disk Reactor: Effects of Disk Speed. , 2021, , .		1
14	Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size. Advanced Powder Technology, 2020, 31, 269-278.	4.1	37
15	Removal of Phosphate from Aqueous Solutions Using Chemically Synthesized Vaterite Polymorph of Porous Calcium Carbonate Nanoparticles under Optimized Conditions. Journal of Nanomaterials, 2020, 2020, 1-15.	2.7	10
16	Electrochemical Copolymerization of Isoindigoâ€Based Donorâ€Acceptor Polymers with Intrinsically Enhanced Conductivity and Nearâ€Infraredâ€II Activity. ChemElectroChem, 2020, 7, 3752-3760.	3.4	8
17	Synthesis of Hematite Nanodiscs from Natural Laterites and Investigating Their Adsorption Capability of Removing Ni2+ and Cd2+ Ions from Aqueous Solutions. Journal of Composites Science, 2020, 4, 57.	3.0	11
18	Designing hierarchical structures of complex electronically conducting organic polymers <i>via</i> one-step electro-polymerization. Journal of Materials Chemistry C, 2020, 8, 5934-5940.	5.5	8

R M Gamini Rajapakse

#	Article	IF	CITATIONS
19	Nonhazardous Process for Extracting Pure Titanium Dioxide Nanorods from Geogenic Ilmenite. ACS Omega, 2020, 5, 16176-16182.	3.5	15
20	Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures. Environmental Science: Nano, 2020, 7, 1225-1239.	4.3	21
21	Removal of fluoride from aqueous solution by porous Vaterite calcium carbonate nanoparticles. Materials Research Express, 2020, 7, 035009.	1.6	14
22	Synthesis of cisplatin encapsulated Zinc oxide nanoparticles and their application as a carrier in targeted drug delivery. Ceylon Journal of Science, 2020, 49, 71.	0.3	8
23	Powder Pressed Cuprous Iodide (CuI) as A Hole Transporting Material for Perovskite Solar Cells. Materials, 2019, 12, 2037.	2.9	35
24	A potential working electrode based on graphite and montmorillonite for electrochemical applications in both aqueous and molten salt electrolytes. Electrochemistry Communications, 2019, 108, 106562.	4.7	10
25	Radically Accessing D–A Type Ambipolar Copolymeric Materials with Intrinsic Electrical Conductivity and Visible–Near Infrared Absorption Via Electroâ€Copolymerization. Macromolecular Chemistry and Physics, 2019, 220, 1900289.	2.2	5
26	Thermal decomposition of calcium carbonate (calcite polymorph) as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 2019, 134, 21-28.	4.0	233
27	Advances in electro-copolymerization of NIR emitting and electronically conducting block copolymers. Journal of Materials Chemistry C, 2019, 7, 3168-3172.	5.5	16
28	Akaganeite nanorices deposited muscovite mica surfaces as sunlight active green photocatalyst. Royal Society Open Science, 2019, 6, 182212.	2.4	9
29	Doxorubicin Loaded Magnesium Oxide Nanoflakes as pH Dependent Carriers for Simultaneous Treatment of Cancer and Hypomagnesemia. Nanomaterials, 2019, 9, 208.	4.1	22
30	Synthesis of a hydroxyapatite/poly(methyl methacrylate) nanocomposite using dolomite. Nanoscale Advances, 2019, 1, 86-88.	4.6	24
31	The effect of prolonged milling time on comminution of quartz. Powder Technology, 2018, 330, 266-274.	4.2	28
32	The composition, unit cell parameters and microstructure of quartz during phase transformation from α to β as examined by in-situ high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 2018, 117, 131-138.	4.0	20
33	Encapsulation of anticancer drug cisplatin in vaterite polymorph of calcium carbonate nanoparticles for targeted delivery and slow release. Biomedical Physics and Engineering Express, 2018, 4, 015017.	1.2	10
34	Preparation and characterization of mesoporous hydroxyapatite with non-cytotoxicity and heavy metal adsorption capacity. New Journal of Chemistry, 2018, 42, 10271-10278.	2.8	24
35	Relative stability of hydrated/anhydrous products of calcium chloride during complete dehydration as examined by high-temperature X-ray powder diffraction. Journal of Physics and Chemistry of Solids, 2018, 120, 167-172.	4.0	18
36	Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Advances in Materials Science and Engineering, 2018, 2018, 1-11.	1.8	79

3

#	Article	IF	CITATIONS
37	Synthesis and characterization of [MCl 2 (PAr 3) 2]–ethylenedioxythiophene copolymers (M = Pd, Pt), made by electropolymerisation of diphenyl(2,2′,3,3′-tetrahydro-[5,5′-bithieno[3,4- b) Tj ETQq1 1 0.784	3142rgBT	Overlock 101
38	Encapsulation of anticancer drug copper bis(8-hydroxyquinoline) in hydroxyapatite for pH-sensitive targeted delivery and slow release. Materials Science and Engineering C, 2017, 71, 206-213.	7.3	50
39	Synthesis of high purity calcium carbonate micro―and nanoâ€structures on polyethylene glycol templates using dolomite. Crystal Research and Technology, 2016, 51, 207-214.	1.3	20
40	Preparation, characterization and oxygen reduction catalytic activities of nanocomposites of Co(<scp>ii</scp>)/montmorillonite containing polypyrrole, polyaniline or poly(ethylenedioxythiophene). RSC Advances, 2016, 6, 112853-112863.	3.6	14
41	Preparation of Fluoride-Doped Tin Oxide Films on Soda–Lime Glass Substrates by Atomized Spray Pyrolysis Technique and Their Subsequent Use in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16479-16485.	3.1	34
42	Convenient routes to synthesize uncommon vaterite nanoparticles and the nanocomposites of alkyd resin/polyaniline/vaterite: The latter possessing superior anticorrosive performance on mild steel surfaces. Electrochimica Acta, 2014, 117, 460-469.	5.2	25
43	Formation of hollow bone-like morphology of calcium carbonate on surfactant/polymer templates. Journal of Crystal Growth, 2014, 392, 52-59.	1.5	28
44	Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Materials Science and Engineering C, 2014, 42, 83-90.	7.3	85
45	A Novel Method to Enhance the Performance of Quasi-solid-state Dye-sensitized Solar Cells Based on Polyacrylonitrile Gel Electrolyte and Nanoparticles of ZnO with Indoline D-358 as the Dye. Chemistry Letters, 2014, 43, 681-683.	1.3	2
46	Precipitated calcium carbonate/poly(methyl methacrylate) nanocomposite using dolomite: Synthesis, characterization and properties. Powder Technology, 2013, 235, 628-632.	4.2	45
47	Hydrothermally synthesized titania nanotubes as a promising electron transport medium in dye sensitized solar cells exhibiting a record efficiency of 7.6% for 1-D based devices. Journal of Materials Chemistry A, 2013, 1, 5377.	10.3	43
48	Photodegradation of Triphenylamino Methane (Magenta) by Photosensitizer in Oxygenated Solutions. Environmental Science & Technology, 2009, 43, 176-180.	10.0	39
49	Synthesis and characterization of monomeric and polymeric Pd(II) and Pt(II) complexes of 3,4-ethylenedioxythiophene-functionalized phosphine ligands. Journal of Materials Chemistry, 2009, 19, 1850.	6.7	18
50	AC impedance analysis of polyaniline–montmorillonite nanocomposites. Ionics, 2006, 12, 287-294.	2.4	16
51	MONTMORILLONITE AS A CONDUCTIVITY ENHANCER IN (PEO) ₉ LiCF ₃ SO ₃ POLYMER ELECTROLYTE. , 2006, , .		0
52	Cuprous Ion Conducting Montmorillonite- Polypyrrole Nanocomposites. , 2006, , .		0
53	5,10,15,20-tetrakis(4- N -pentylpyridyl)porphyrins, [(TPePyP) H ₂] ⁴⁺ and [(TPePyP) Zn ^{II}] ⁴⁺ . Journal of Porphyrins and Phylochecometrics 2005, 20, 155,252	0.8	6
54	Electrosynthesis and characterization of biotin-functionalized poly(terthiophene) copolymers, and their response to avidin. Journal of Materials Chemistry, 2005, 15, 1186.	6.7	34

#	Article	IF	CITATIONS
55	Grafting and electrochemical characterisation of poly-(3,4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces. Journal of Materials Chemistry, 2003, 13, 2485-2489.	6.7	59
56	Novel Liquid Crystal Display on Polyaniline Modified Glass. Molecular Crystals and Liquid Crystals, 1997, 307, 125-133.	0.3	1
57	Alignment of Nematic and Ferroelectric Liquid Crystals on Rubbed Polyaniline Films. Molecular Crystals and Liquid Crystals, 1995, 270, 85-89.	0.3	2
58	Correlation of Solid-State Order to Optoelectronic Behavior in Heterocyclic Oligomers. CrystEngComm, 0, , .	2.6	2