Juris Prikulis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9068612/publications.pdf

Version: 2024-02-01

933447 713466 1,804 23 10 21 citations g-index h-index papers 23 23 23 2399 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches. Nanomaterials, 2021, 11, 117.	4.1	9
2	Visible Photoluminescence of Variable-Length Zinc Oxide Nanorods Embedded in Porous Anodic Alumina Template for Biosensor Applications. Coatings, $2021,11,756.$	2.6	6
3	High-Density Plasmonic Nanoparticle Arrays Deposited on Nanoporous Anodic Alumina Templates for Optical Sensor Applications. Nanomaterials, 2019, 9, 531.	4.1	16
4	Variable Thickness Porous Anodic Alumina/Metal Film Bilayers for Optimization of Plasmonic Scattering by Nanoholes on Mirror. ACS Omega, 2018, 3, 5783-5788.	3.5	8
5	Colloidal nanoparticle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly. Surface and Coatings Technology, 2017, 326, 264-269.	4.8	10
6	Relative Humidity Dependent Resistance Switching of Bi ₂ S ₃ Nanowires. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	2
7	Determination of Young's modulus of Sb ₂ S ₃ nanowires by in situ resonance and bending methods. Beilstein Journal of Nanotechnology, 2016, 7, 278-283.	2.8	13
8	Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond. EPJ Applied Physics, 2016, 73, 20701.	0.7	9
9	Optical properties of thin metal films with nanohole arrays on porous alumina–aluminum structures. RSC Advances, 2015, 5, 68143-68150.	3.6	11
10	Polarized interference imaging of dense disordered plasmonic nanoparticle arrays for biosensor applications. Physica Scripta, 2015, 90, 094002.	2.5	1
11	Application of a Nanoelectromechanical Mass Sensor for the Manipulation and Characterisation of Graphene and Graphite Flakes. Science of Advanced Materials, 2015, 7, 552-557.	0.7	5
12	Gold nanowire synthesis by semiâ€immersed nanoporous anodic aluminium oxide templates in potassium dicyanoaurateâ€hexacyanoferrate electrolyte. Micro and Nano Letters, 2014, 9, 761-765.	1.3	5
13	Optical Scattering by Dense Disordered Metal Nanoparticle Arrays. Plasmonics, 2014, 9, 427-434.	3.4	13
14	An AC-assisted single-nanowire electromechanical switch. Journal of Materials Chemistry C, 2013, 1, 7134.	5.5	13
15	Application of Ge Nanowire for Two-Input Bistable Nanoelectromechanical Switch. Medziagotyra, 2013, 19, .	0.2	6
16	Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes. Medziagotyra, 2012, 18, .	0.2	1
17	Dynamic Force Sensor for <i>In Situ</i> Studies of Nanometer Size Contacts with Controllable Gap Potential. Advanced Materials Research, 2011, 222, 166-169.	0.3	0
18	Confined Plasmons in Nanofabricated Single Silver Particle Pairs:Â Experimental Observations of Strong Interparticle Interactions. Journal of Physical Chemistry B, 2005, 109, 1079-1087.	2.6	488

#	Article	IF	CITATIONS
19	Optical Spectroscopy of Nanometric Holes in Thin Gold Films. Nano Letters, 2004, 4, 1003-1007.	9.1	280
20	Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution. Nano Letters, 2004, 4, 115-118.	9.1	181
21	Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arraysâ€. Journal of Physical Chemistry B, 2003, 107, 7337-7342.	2.6	665
22	Laser-Induced Growth of Ag Nanoparticles from Aqueous Solutions. ChemPhysChem, 2002, 3, 116-119.	2.1	61
23	Characterization of Resistivity of Sb ₂ S ₃ Semiconductor Nanowires by Conductive AFM and <i>In Situ</i> Methods. Advanced Materials Research, 0, 222, 106-109.	0.3	1