Patrizia Paolicelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067965/publications.pdf

Version: 2024-02-01

236925 214800 2,220 53 25 47 citations h-index g-index papers 54 54 54 3559 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules, 2022, 27, 2959.	3.8	1
2	Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. International Journal of Biological Macromolecules, 2021, 166, 1292-1300.	7.5	38
3	Injectable and In Situ Gelling Dextran Derivatives Containing Hydrolyzable Groups for the Delivery of Large Molecules. Gels, 2021, 7, 150.	4.5	2
4	The Impact of Bilayer Rigidity on the Release from Magnetoliposomes Vesicles Controlled by PEMFs. Pharmaceutics, 2021, 13, 1712.	4.5	8
5	Investigating the Role of Polydopamine to Modulate Stem Cell Adhesion and Proliferation on Gellan Gum-Based Hydrogels. ACS Applied Bio Materials, 2020, 3, 945-951.	4.6	24
6	Lavandula x intermedia essential oil and hydrolate: Evaluation of chemical composition and antibacterial activity before and after formulation in nanoemulsion. Industrial Crops and Products, 2020, 145, 112068.	5. 2	53
7	Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants, 2020, 9, 632.	5.1	16
8	Proof-of-Concept of Electrical Activation of Liposome Nanocarriers: From Dry to Wet Experiments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 819.	4.1	15
9	Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl-Î ² -Cyclodextrin. Pharmaceutics, 2020, 12, 819.	4.5	10
10	Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals, 2020, 13, 352.	3.8	15
11	Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery II. Theoretical analysis and modelling of in-vitro release experiments. International Journal of Pharmaceutics, 2020, 585, 119471.	5.2	2
12	Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery I. Physico-chemistry study. International Journal of Pharmaceutics, 2020, 585, 119467.	5. 2	7
13	Planning Sine Waves Electroporation on Liposomes for Drug Delivery Application. , 2020, , .		1
14	Gellan Gum/Laponite Beads for the Modified Release of Drugs: Experimental and Modeling Study of Gastrointestinal Release. Pharmaceutics, 2019, 11, 187.	4.5	30
15	Feasibility of Drug Delivery Mediated by Ultra-Short and Intense Pulsed Electric Fields. , 2019, 2019, 1678-1681.		6
16	Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry, 2018, 254, 377-389.	8.2	192
17	SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural Sesquiterpene Î ² -Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery Design. Pharmaceutics, 2018, 10, 274.	4.5	32
18	Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 2018, 10, 222.	4.5	23

#	Article	IF	CITATIONS
19	Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal, 2018, 104, 184-193.	5.4	47
20	Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. International Journal of Pharmaceutics, 2018, 547, 226-234.	5.2	49
21	Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?. Nanomaterials, 2018, 8, 196.	4.1	21
22	Evaluation of processing effects on anthocyanin content and colour modifications of blueberry () Tj ETQq0 0 0 rg	BT /Overlo 8.2	ock 10 Tf 50 6 73
23	DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY. Carbohydrate Polymers, 2017, 174, 960-969.	10.2	23
24	Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions. Journal of Colloid and Interface Science, 2016, 479, 25-33.	9.4	25
25	Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 2016, 202, 59-69.	8.2	139
26	Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. European Polymer Journal, 2016, 77, 114-123.	5.4	88
27	From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. Journal of Drug Delivery Science and Technology, 2016, 32, 88-99.	3.0	25
28	Infant Milk Formulas: Effect of Storage Conditions on the Stability of Powdered Products towards Autoxidation. Foods, 2015, 4, 487-500.	4.3	41
29	New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization. Carbohydrate Polymers, 2015, 126, 208-214.	10.2	35
30	Injectable and photocross-linkable gels based on gellan gum methacrylate: A new tool for biomedical application. International Journal of Biological Macromolecules, 2015, 72, 1335-1342.	7.5	53
31	Application of NMR spectroscopy in the development of a biomimetic approach for hydrophobic drug association with physical hydrogels. Colloids and Surfaces B: Biointerfaces, 2014, 115, 391-399.	5.0	7
32	Design and development of PEG-DMA gel-in-liposomes as a new tool for drug delivery. Reactive and Functional Polymers, 2014, 77, 30-38.	4.1	27
33	Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation and $<$ i>i>in $vivoi>studies. Journal of Microencapsulation, 2014, 31, 440-447.$	2.8	4
34	Gellan gum and polyethylene glycol dimethacrylate double network hydrogels with improved mechanical properties. Journal of Polymer Research, 2014, 21, 1.	2.4	25
35	Solid Lipid Nanoparticles as Effective Reservoir Systems for Long-Term Preservation of Multidose Formulations. AAPS PharmSciTech, 2013, 14, 847-853.	3.3	13
36	Novel injectable and in situ cross-linkable hydrogels of dextran methacrylate and scleroglucan derivatives: Preparation and characterization. Carbohydrate Polymers, 2013, 92, 1033-1039.	10.2	29

#	Article	IF	Citations
37	NMR Characterization of Carboxymethyl Scleroglucan. International Journal of Polymer Analysis and Characterization, 2013, 18, 587-595.	1.9	5
38	Spermidine-Cross-linked Hydrogels as Novel Potential Platforms for Pharmaceutical Applications. Journal of Pharmaceutical Sciences, 2013, 102, 2632-2643.	3. 3	30
39	Influence of fat extraction methods on the peroxide value in infant formulas. Food Research International, 2012, 48, 584-591.	6.2	18
40	Suzuki-Miyaura cross-coupling of arenediazonium salts catalyzed by alginate/gellan-stabilized palladium nanoparticles under aerobic conditions in water. Green Chemistry, 2012, 14, 317-320.	9.0	52
41	Novel pH-Sensitive Physical Hydrogels of Carboxymethyl Scleroglucan. Journal of Pharmaceutical Sciences, 2012, 101, 256-267.	3.3	14
42	Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, 2010, 62, 100-117.	13.7	323
43	Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine, 2010, 5, 843-853.	3.3	26
44	Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28, 2607-2614.	3.8	157
45	Physical Carboxymethylscleroglucan/Calcium Ion Hydrogels as Modified Drug Delivery Systems in Topical Formulations. Molecules, 2009, 14, 2684-2698.	3.8	18
46	Influence of the formulation components on the properties of the system SLN-dextran hydrogel for the modified release of drugs. Journal of Microencapsulation, 2009, 26, 355-364.	2.8	18
47	Chitosan nanoparticles for drug delivery to the eye. Expert Opinion on Drug Delivery, 2009, 6, 239-253.	5.0	91
48	pH-Sensitive hydrogels of dextran: Synthesis, characterization and <i>in vivo </i> studies. Journal of Drug Targeting, 2008, 16, 649-659.	4.4	15
49	Biodegradable and pH-Sensitive Hydrogels for Potential Colon-Specific Drug Delivery: Characterization and In Vitro Release Studies. Biomacromolecules, 2008, 9, 43-49.	5.4	84
50	Hydrogels of Dextran Containing Nonsteroidal Anti-Inflammatory Drugs as Pendant Agents. Drug Delivery, 2007, 14, 87-93.	5.7	16
51	Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 682-689.	4.3	11
52	Photocrosslinking of dextran and polyaspartamide derivatives: A combination suitable for colon-specific drug delivery. Journal of Controlled Release, 2007, 119, 328-338.	9.9	56
53	Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. International Journal of Pharmaceutics, 2006, 325, 140-146.	5. 2	83