Patrizia Paolicelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, 2010, 62, 100-117.	13.7	323
2	Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry, 2018, 254, 377-389.	8.2	192
3	Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28, 2607-2614.	3.8	157
4	Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction. Food Chemistry, 2016, 202, 59-69.	8.2	139
5	Chitosan nanoparticles for drug delivery to the eye. Expert Opinion on Drug Delivery, 2009, 6, 239-253.	5.0	91
6	Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. European Polymer Journal, 2016, 77, 114-123.	5.4	88
7	Biodegradable and pH-Sensitive Hydrogels for Potential Colon-Specific Drug Delivery: Characterization and In Vitro Release Studies. Biomacromolecules, 2008, 9, 43-49.	5.4	84
8	Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. International Journal of Pharmaceutics, 2006, 325, 140-146.	5.2	83
9	Evaluation of processing effects on anthocyanin content and colour modifications of blueberry () Tj ETQq1 1 0.784	4314 rgBT 8.2	/Overlock 73
10	Photocrosslinking of dextran and polyaspartamide derivatives: A combination suitable for colon-specific drug delivery. Journal of Controlled Release, 2007, 119, 328-338.	9.9	56
11	Injectable and photocross-linkable gels based on gellan gum methacrylate: A new tool for biomedical application. International Journal of Biological Macromolecules, 2015, 72, 1335-1342.	7.5	53
12	Lavandula x intermedia essential oil and hydrolate: Evaluation of chemical composition and antibacterial activity before and after formulation in nanoemulsion. Industrial Crops and Products, 2020, 145, 112068.	5.2	53
13	Suzuki-Miyaura cross-coupling of arenediazonium salts catalyzed by alginate/gellan-stabilized palladium nanoparticles under aerobic conditions in water. Green Chemistry, 2012, 14, 317-320.	9.0	52
14	Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. International Journal of Pharmaceutics, 2018, 547, 226-234.	5.2	49
15	Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal, 2018, 104, 184-193.	5.4	47
16	Infant Milk Formulas: Effect of Storage Conditions on the Stability of Powdered Products towards Autoxidation. Foods, 2015, 4, 487-500.	4.3	41
17	Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. International Journal of Biological Macromolecules, 2021, 166, 1292-1300.	7.5	38
18	New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization. Carbohydrate Polymers, 2015, 126, 208-214.	10.2	35

PATRIZIA PAOLICELLI

#	Article	IF	CITATIONS
19	SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural Sesquiterpene β-Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery Design. Pharmaceutics, 2018, 10, 274.	4.5	32
20	Spermidine-Cross-linked Hydrogels as Novel Potential Platforms for Pharmaceutical Applications. Journal of Pharmaceutical Sciences, 2013, 102, 2632-2643.	3.3	30
21	Gellan Gum/Laponite Beads for the Modified Release of Drugs: Experimental and Modeling Study of Gastrointestinal Release. Pharmaceutics, 2019, 11, 187.	4.5	30
22	Novel injectable and in situ cross-linkable hydrogels of dextran methacrylate and scleroglucan derivatives: Preparation and characterization. Carbohydrate Polymers, 2013, 92, 1033-1039.	10.2	29
23	Design and development of PEC-DMA gel-in-liposomes as a new tool for drug delivery. Reactive and Functional Polymers, 2014, 77, 30-38.	4.1	27
24	Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine, 2010, 5, 843-853.	3.3	26
25	Gellan gum and polyethylene glycol dimethacrylate double network hydrogels with improved mechanical properties. Journal of Polymer Research, 2014, 21, 1.	2.4	25
26	Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions. Journal of Colloid and Interface Science, 2016, 479, 25-33.	9.4	25
27	From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. Journal of Drug Delivery Science and Technology, 2016, 32, 88-99.	3.0	25
28	Investigating the Role of Polydopamine to Modulate Stem Cell Adhesion and Proliferation on Gellan Gum-Based Hydrogels. ACS Applied Bio Materials, 2020, 3, 945-951.	4.6	24
29	DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY. Carbohydrate Polymers, 2017, 174, 960-969.	10.2	23
30	Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 2018, 10, 222.	4.5	23
31	Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?. Nanomaterials, 2018, 8, 196.	4.1	21
32	Physical Carboxymethylscleroglucan/Calcium Ion Hydrogels as Modified Drug Delivery Systems in Topical Formulations. Molecules, 2009, 14, 2684-2698.	3.8	18
33	Influence of the formulation components on the properties of the system SLN-dextran hydrogel for the modified release of drugs. Journal of Microencapsulation, 2009, 26, 355-364.	2.8	18
34	Influence of fat extraction methods on the peroxide value in infant formulas. Food Research International, 2012, 48, 584-591.	6.2	18
35	Hydrogels of Dextran Containing Nonsteroidal Anti-Inflammatory Drugs as Pendant Agents. Drug Delivery, 2007, 14, 87-93.	5.7	16
36	Effects of Processing on Polyphenolic and Volatile Composition and Fruit Quality of Clery Strawberries. Antioxidants, 2020, 9, 632.	5.1	16

PATRIZIA PAOLICELLI

#	Article	IF	CITATIONS
37	pH-Sensitive hydrogels of dextran: Synthesis, characterization and <i>in vivo</i> studies. Journal of Drug Targeting, 2008, 16, 649-659.	4.4	15
38	Proof-of-Concept of Electrical Activation of Liposome Nanocarriers: From Dry to Wet Experiments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 819.	4.1	15
39	Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals, 2020, 13, 352.	3.8	15
40	Novel pH-Sensitive Physical Hydrogels of Carboxymethyl Scleroglucan. Journal of Pharmaceutical Sciences, 2012, 101, 256-267.	3.3	14
41	Solid Lipid Nanoparticles as Effective Reservoir Systems for Long-Term Preservation of Multidose Formulations. AAPS PharmSciTech, 2013, 14, 847-853.	3.3	13
42	Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 682-689.	4.3	11
43	Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl-β-Cyclodextrin. Pharmaceutics, 2020, 12, 819.	4.5	10
44	The Impact of Bilayer Rigidity on the Release from Magnetoliposomes Vesicles Controlled by PEMFs. Pharmaceutics, 2021, 13, 1712.	4.5	8
45	Application of NMR spectroscopy in the development of a biomimetic approach for hydrophobic drug association with physical hydrogels. Colloids and Surfaces B: Biointerfaces, 2014, 115, 391-399.	5.0	7
46	Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery I. Physico-chemistry study. International Journal of Pharmaceutics, 2020, 585, 119467.	5.2	7
47	Feasibility of Drug Delivery Mediated by Ultra-Short and Intense Pulsed Electric Fields. , 2019, 2019, 1678-1681.		6
48	NMR Characterization of Carboxymethyl Scleroglucan. International Journal of Polymer Analysis and Characterization, 2013, 18, 587-595.	1.9	5
49	Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation and <i>in vivo</i> studies. Journal of Microencapsulation, 2014, 31, 440-447.	2.8	4
50	Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery II. Theoretical analysis and modelling of in-vitro release experiments. International Journal of Pharmaceutics, 2020, 585, 119471.	5.2	2
51	Injectable and In Situ Gelling Dextran Derivatives Containing Hydrolyzable Groups for the Delivery of Large Molecules. Gels, 2021, 7, 150.	4.5	2
52	Planning Sine Waves Electroporation on Liposomes for Drug Delivery Application. , 2020, , .		1
53	Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules, 2022, 27, 2959.	3.8	1