Nicolas E Buchler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9067535/publications.pdf

Version: 2024-02-01

39 papers 3,714 citations

257450 24 h-index 315739 38 g-index

54 all docs

54 docs citations

times ranked

54

4215 citing authors

#	Article	IF	CITATIONS
1	Competition for DNA binding between paralogous transcription factors determines their genomic occupancy and regulatory functions. Genome Research, 2021, 31, 1216-1229.	5. 5	14
2	Chytrid fungi. Current Biology, 2020, 30, R516-R520.	3.9	24
3	Genetic transformation of Spizellomyces punctatus, a resource for studying chytrid biology and evolutionary cell biology. ELife, 2020, 9, .	6.0	29
4	Exact and efficient hybrid Monte Carlo algorithm for accelerated Bayesian inference of gene expression models from snapshots of single-cell transcripts. Journal of Chemical Physics, 2019, 151, 024106.	3.0	9
5	Evolutionary innovation, fungal cell biology, and the lateral gene transfer of a viral KilA-N domain. Current Opinion in Genetics and Development, 2019, 58-59, 103-110.	3.3	10
6	Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Molecular Cell, 2019, 76, 909-921.e3.	9.7	83
7	Epigenetic switching as a strategy for quick adaptation while attenuating biochemical noise. PLoS Computational Biology, 2019, 15, e1007364.	3.2	17
8	Enhancer Histone Acetylation Modulates Transcriptional Bursting Dynamics of Neuronal Activity-Inducible Genes. Cell Reports, 2019, 26, 1174-1188.e5.	6.4	111
9	The evolution of a G1/S transcriptional network in yeasts. Current Genetics, 2018, 64, 81-86.	1.7	12
10	Daily humidity oscillation regulates the circadian clock to influence plant physiology. Nature Communications, 2018, 9, 4290.	12.8	38
11	Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes. Journal of the Royal Society Interface, 2018, 15, 20170804.	3.4	25
12	Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4942-4947.	7.1	33
13	Long-term growth data of Escherichia coli at a single-cell level. Scientific Data, 2017, 4, 170036.	5. 3	23
14	BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells. Genome Biology, 2017, 18, 164.	8.8	37
15	Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness. PLoS Genetics, 2017, 13, e1006778.	3 . 5	11
16	Cell cycle Start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates. Molecular Biology of the Cell, 2016, 27, 64-74.	2.1	52
17	The <i>Physarum polycephalum</i> Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling. Genome Biology and Evolution, 2016, 8, 109-125.	2.5	87
18	Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. ELife, 2016, 5, .	6.0	52

#	Article	IF	CITATIONS
19	Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators. Physical Review E, 2015, 92, 062712.	2.1	16
20	A noisy linear map underlies oscillations in cell size and gene expression in bacteria. Nature, 2015, 523, 357-360.	27.8	209
21	Redox rhythm reinforces the circadian clock to gate immune response. Nature, 2015, 523, 472-476.	27.8	167
22	Different Mechanisms Confer Gradual Control and Memory at Nutrient- and Stress-Regulated Genes in Yeast. Molecular and Cellular Biology, 2015, 35, 3669-3683.	2.3	16
23	Measuring fast gene dynamics in single cells with time-lapse luminescence microscopy. Molecular Biology of the Cell, 2014, 25, 3699-3708.	2.1	23
24	Multicolor Timelapse Luminescence Microscopy: Optimizing Luciferases to Track Fast Gene Dynamics in Single Yeast Cells. Biophysical Journal, 2014, 106, 372a-373a.	0.5	0
25	Programming stressâ€induced altruistic death in engineered bacteria. Molecular Systems Biology, 2012, 8, 626.	7.2	55
26	Chromatin: Bind at Your Own RSC. Current Biology, 2011, 21, R223-R225.	3.9	2
27	Evolution of networks and sequences in eukaryotic cell cycle control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3532-3544.	4.0	121
28	Protein sequestration generates a flexible ultrasensitive response in a genetic network. Molecular Systems Biology, 2009, 5, 272.	7.2	209
29	Molecular Titration and Ultrasensitivity in Regulatory Networks. Journal of Molecular Biology, 2008, 384, 1106-1119.	4.2	248
30	Designing sequential transcription logic: a simple genetic circuit for conditional memory. Systems and Synthetic Biology, 2007, 1, 89-98.	1.0	30
31	Two-Faced Cyclins with Eyes on the Targets. Cell Cycle, 2005, 4, 125-130.	2.6	36
32	Nonlinear protein degradation and the function of genetic circuits. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9559-9564.	7.1	157
33	Transcriptional regulation by the numbers: applications. Current Opinion in Genetics and Development, 2005, 15, 125-135.	3.3	343
34	Transcriptional regulation by the numbers: models. Current Opinion in Genetics and Development, 2005, 15, 116-124.	3.3	660
35	On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5136-5141.	7.1	586
36	Surveying determinants of protein structure designability across different energy models and amino-acid alphabets: A consensus. Journal of Chemical Physics, 2000, 112, 2533-2547.	3.0	35

3

#	Article	IF	CITATIONS
37	Universal correlation between energy gap and foldability for the random energy model and lattice proteins. Journal of Chemical Physics, 1999, 111, 6599-6609.	3.0	19
38	Effect of alphabet size and foldability requirements on protein structure designability. Proteins: Structure, Function and Bioinformatics, 1999, 34, 113-124.	2.6	56
39	Protein Heteronuclear NMR Assignments Using Mean-Field Simulated Annealing. Journal of Magnetic Resonance, 1997, 125, 34-42.	2.1	55