Mark B Bush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/906752/publications.pdf

Version: 2024-02-01

		20817	22166
182	14,340	60	113
papers	citations	h-index	g-index
191	191	191	11921
171	171	171	11721
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 2007, 10, 315-331.	6.4	1,361
2	A Long Pollen Record from Lowland Amazonia: Forest and Cooling in Glacial Times. Science, 1996, 274, 85-88.	12.6	719
3	Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 2008, 30, 887-907.	3.8	590
4	Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews, 2000, 19, 141-169.	3.0	504
5	Conservation of Biodiversity in a Changing Climate. Conservation Biology, 2002, 16, 264-268.	4.7	367
6	Amazonian Speciation: A Necessarily Complex Model. Journal of Biogeography, 1994, 21, 5.	3.0	346
7	48,000 Years of Climate and Forest Change in a Biodiversity Hot Spot. Science, 2004, 303, 827-829.	12.6	312
8	Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361, 920-923.	12.6	307
9	Upslope migration of Andean trees. Journal of Biogeography, 2011, 38, 783-791.	3.0	306
10	Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics, 1999, 15, 823-856.	3.8	300
11	Introduction: Elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 2010, 16, 3171-3175.	9.5	240
12	Late Pleistocene Temperature Depression and Vegetation Change in Ecuadorian Amazonia. Quaternary Research, 1990, 34, 330-345.	1.7	216
13	A 14 300‥r Paleoecological Profile of a Lowland Tropical Lake in Panama. Ecological Monographs, 1992, 62, 251-275.	5.4	214
14	An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews, 2008, 27, 1152-1165.	3.0	211
15	Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 499-514.	4.0	206
16	Sparse Pre-Columbian Human Habitation in Western Amazonia. Science, 2012, 336, 1429-1431.	12.6	202
17	A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science, 1990, 1, 105-118.	2.2	190
18	A 6,000 year history of Amazonian maize cultivation. Nature, 1989, 340, 303-305.	27.8	180

#	Article	IF	CITATIONS
19	A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 194, 259-279.	2.3	170
20	Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology, 2002, 121, 1-75.	1.5	168
21	Distributional change and conservation on the Andean flank: a palaeoecological perspective. Global Ecology and Biogeography, 2002, 11 , $463-473$.	5.8	164
22	On the interpretation of fossil Poaceae pollen in the lowland humid neotropics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 177, 5-17.	2.3	148
23	Paleoenvironments and Human Occupation in Late-Glacial Panama. Quaternary Research, 1990, 33, 108-116.	1.7	147
24	Fire, climate change and biodiversity in Amazonia: a Late-Holocene perspective. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1795-1802.	4.0	142
25	Introducing a new (freeware) tool for palynology. Journal of Biogeography, 2007, 34, 377-380.	3.0	138
26	Holocene fire and occupation in Amazonia: records from two lake districts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 209-218.	4.0	136
27	Tropical Forest Disturbance: Paleoecological Records from Darien, Panama. Ecology, 1994, 75, 1761-1768.	3.2	133
28	Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nature Geoscience, 2009, 2, 46-50.	12.9	129
29	Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 359-393.	2.3	127
30	A test of <i>Sporormiella</i> representation as a predictor of megaherbivore presence and abundance. Quaternary Research, 2009, 71, 490-496.	1.7	125
31	Predicting pre-Columbian anthropogenic soils in Amazonia. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132475.	2.6	125
32	Glacial and Postglacial Pollen Records from the Ecuadorian Andes and Amazon. Quaternary Research, 1997, 48, 69-78.	1.7	119
33	Temperature depression in the lowland tropics in glacial times. Climatic Change, 1996, 32, 19-33.	3.6	118
34	On metapopulations and microrefugia: palaeoecological insights. Journal of Biogeography, 2011, 38, 419-429.	3.0	117
35	North Atlantic forcing of Amazonian precipitation during the last ice age. Nature Geoscience, 2012, 5, 817-820.	12.9	116
36	Orbital forcing signal in sediments of two Amazonianlakes. Journal of Paleolimnology, 2002, 27, 341-352.	1.6	114

#	Article	IF	CITATIONS
37	A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. Journal of Quaternary Science, 2005, 20, 703-714.	2.1	111
38	A 7000-year pollen record from the Amazon lowlands, Ecuador. Plant Ecology, 1988, 76, 141-154.	1.2	107
39	Two histories of environmental change and human disturbance in eastern lowland Amazonia. Holocene, 2000, 10, 543-553.	1.7	104
40	Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. Journal of Quaternary Science, 2004, 19, 677-684.	2.1	103
41	Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quaternary Science Reviews, 2012, 38, 63-75.	3.0	102
42	An analysis of modern pollen rain on an elevational gradient in southern Peru. Journal of Tropical Ecology, 2004, 20, 113-124.	1.1	101
43	Title is missing!. Biogeochemistry, 1998, 40, 37-55.	3.5	97
44	Anthropogenic influence on Amazonian forests in preâ€history: An ecological perspective. Journal of Biogeography, 2015, 42, 2277-2288.	3.0	95
45	Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Frontiers in Ecology and the Environment, 2007, 5, 457-465.	4.0	92
46	Amazonia and the Anthropocene: What was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory?. Holocene, 2015, 25, 1588-1597.	1.7	92
47	Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate of the Past, 2009, 5, 725-767.	3.4	87
48	A regional study of Holocene climate change and human occupation in Peruvian Amazonia. Journal of Biogeography, 2007, 34, 1342-1356.	3.0	84
49	Holocene climate change and hydrarch succession in lowland Amazonian Ecuador. Review of Palaeobotany and Palynology, 2002, 120, 73-90.	1.5	83
50	Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene, 2012, 22, 131-141.	1.7	80
51	A 6900-year history of landscape modification by humans in lowland Amazonia. Quaternary Science Reviews, 2016, 141, 52-64.	3.0	80
52	A 24,700-yr paleolimnological history from the Peruvian Andes. Quaternary Research, 2009, 71, 71-82.	1.7	76
53	No Differences in Soil Carbon Stocks Across the Tree Line in the Peruvian Andes. Ecosystems, 2010, 13, 62-74.	3.4	75
54	Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography, 2001, 10, 359-367.	5 . 8	71

#	Article	IF	CITATIONS
55	Deriving Response Matrices from Central American Modern Pollen Rain. Quaternary Research, 2000, 54, 132-143.	1.7	70
56	A multiproxy palaeoecological record of Holocene lake sediments from the Rio Tapaj \tilde{A}^3 s, eastern Amazonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240, 523-535.	2.3	70
57	A late Holocene record of arid events from the Cuzco region, Peru. Journal of Quaternary Science, 2003, 18, 491-502.	2.1	68
58	Paleoecological perspectives on human adaptation in central Panama. II the Holocene. Geoarchaeology - an International Journal, 1991, 6, 227-250.	1.5	66
59	Neotropical Plant Reproductive Strategies and Fossil Pollen Representation. American Naturalist, 1995, 145, 594-609.	2.1	66
60	Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quaternary Research, 2005, 63, 90-98.	1.7	65
61	From ice age to modern: a record of landscape change in an Andean cloud forest. Journal of Biogeography, 2010, 37, 1637-1647.	3.0	65
62	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	27.8	65
63	Modern pollen-rain data from South and Central America: a test of the feasibility of fine-resolution lowland tropical palynology. Holocene, 1991, 1, 162-167.	1.7	63
64	Longâ€ŧerm drivers of change in <i>Polylepis</i> woodland distribution in the central Andes. Journal of Vegetation Science, 2009, 20, 1041-1052.	2.2	63
65	Updated site compilation of the Latin American Pollen Database. Review of Palaeobotany and Palynology, 2015, 223, 104-115.	1.5	63
66	Holocene fires, forest stability and human occupation in southâ€western Amazonia. Journal of Biogeography, 2013, 40, 521-533.	3.0	59
67	Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259, 35-50.	2.3	57
68	A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research, 2010, 73, 364-373.	1.7	56
69	Impacts of climate variability and human colonization on the vegetation of the Gal $ ilde{A}_i$ pagos Islands. Ecology, 2012, 93, 1853-1866.	3.2	55
70	Pollen Dispersal and Representation in a Neotropical Rain Forest. Global Ecology and Biogeography Letters, 1998, 7, 379.	0.6	51
71	A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305, 201-214.	2.3	51
72	Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research, 2006, 66, 87-96.	1.7	50

#	Article	IF	CITATIONS
73	Holocene changes of Andean alder(Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science, 2004, 19, 685-691.	2.1	47
74	Paleoecological perspectives on human adaptation in central Panama. I. The Pleistocene. Geoarchaeology - an International Journal, 1991, 6, 201-226.	1.5	46
75	The Last Glacial Maximum: stability and change in a western Amazonian cloud forest. Journal of Quaternary Science, 2005, 20, 693-701.	2.1	45
76	Microrefugia, Climate Change, and Conservation of Cedrus atlantica in the Rif Mountains, Morocco. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	45
77	The age of the British chalk grassland. Nature, 1987, 329, 434-436.	27.8	43
78	Terrestrial biosphere changes over the last 120†kyr. Climate of the Past, 2016, 12, 51-73.	3.4	43
79	Re-evaluation of Climate Change in Lowland Central America During the Last Glacial Maximum Using New Sediment Cores from Lake PetÃ \otimes n ItzÃ $_{\rm i}$, Guatemala. Developments in Paleoenvironmental Research, 2009, , 113-128.	8.0	42
80	Phytolith Assemblages Along a Gradient of Ancient Human Disturbance in Western Amazonia. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	41
81	Ecological aspects of plant colonisation of the Krakatau Islands. Geo Journal, 1992, 28, 201.	3.1	38
82	The influence of abrupt climate change on the iceâ€age vegetation of the Central American lowlands. Journal of Biogeography, 2012, 39, 497-509.	3.0	38
83	The influence of biogeographic and ecological heterogeneity on Amazonian pollen spectra. Journal of Tropical Ecology, 2001, 17, 729-743.	1.1	37
84	Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru). Journal of Quaternary Science, 2005, 20, 663-670.	2.1	36
85	Ancient Amazonian populations left lasting impacts on forest structure. Ecosphere, 2017, 8, e02035.	2.2	36
86	A 7000â€year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters, 2019, 22, 925-935.	6.4	36
87	A mid-Holocene environmental change in Amazonian savannas. Journal of Biogeography, 2007, 34, 1313-1326.	3.0	35
88	Pollen dispersal and representation in a neotropical rain forest. Global Ecology and Biogeography, 1998, 7, 379-392.	5.8	34
89	Pollen-vegetation relationships along steep climatic gradients in western Amazonia. Journal of Vegetation Science, 2011, 22, 795-806.	2.2	34
90	Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics. PLoS ONE, 2013, 8, e81958.	2.5	34

#	Article	IF	CITATIONS
91	Comment on "Persistent effects of pre-Columbian plant domestication on Amazonian forest composition― Science, 2017, 358, .	12.6	34
92	Spatiotemporal patterns of pre-Columbian people in Amazonia. Quaternary Research, 2019, 92, 53-69.	1.7	34
93	Amazonian paleoecological histories: one hill, three watersheds. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214, 359-393.	2.3	34
94	Millennial-Scale Ecological Changes in Tropical South America Since the Last Glacial Maximum. Developments in Paleoenvironmental Research, 2009, , 283-300.	8.0	33
95	Historical fire and bamboo dynamics in western Amazonia. Journal of Biogeography, 2013, 40, 299-309.	3.0	33
96	Amazonian conservation in a changing world. Biological Conservation, 1996, 76, 219-228.	4.1	32
97	Nonlinear climate change and Andean feedbacks: an imminent turning point?. Global Change Biology, 2010, 16, 3223-3232.	9.5	32
98	Pre-Columbian fire regimes in lowland tropical rainforests of southeastern Peru. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 342-343, 73-83.	2.3	32
99	Pollen Grain Recognition Using Deep Learning. Lecture Notes in Computer Science, 2016, , 321-330.	1.3	32
100	An 11400 year paleoecological history of a British chalk grassland. Journal of Vegetation Science, 1993, 4, 47-66.	2.2	31
101	The functional extinction of Andean megafauna. Ecology, 2016, 97, 2533-2539.	3.2	31
102	Finding forest management in prehistoric Amazonia. Anthropocene, 2019, 26, 100211.	3.3	30
103	Forest development on Rakata, Panjang and Sertung: Contemporary dynamics (1979?1989). Geo Journal, 1992, 28, 185.	3.1	29
104	Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics. Biota Neotropica, 2016, 16 , .	1.0	29
105	Andean microrefugia: testing the Holocene to predict the Anthropocene. New Phytologist, 2016, 212, 510-522.	7.3	29
106	Tropical Pacific climate variability over the last 6000Âyears as recorded in Bainbridge Crater Lake, Gal¡pagos. Paleoceanography, 2017, 32, 903-922.	3.0	29
107	Widespread reforestation before European influence on Amazonia. Science, 2021, 372, 484-487.	12.6	28
108	Amazonian conservation: pushing the limits of biogeographical knowledge. Journal of Biogeography, 2007, 34, 1291-1293.	3.0	27

#	Article	IF	Citations
109	Fire and drought as drivers of early Holocene tree line changes in the Peruvian Andes. Journal of Quaternary Science, 2011, 26, 28-36.	2.1	27
110	Two paleoecological histories spanning the period of human settlement in southeastern Brazil. Journal of Quaternary Science, 2013, 28, 144-151.	2.1	27
111	The resilience of Amazonian forests. Nature, 2017, 541, 167-168.	27.8	27
112	Human disturbance amplifies Amazonian El Niño–Southern Oscillation signal. Global Change Biology, 2017, 23, 3181-3192.	9.5	27
113	Polylepis woodland dynamics during the last 20,000Âyears. Journal of Biogeography, 2018, 45, 1019-1030.	3.0	27
114	A simple yet efficient pollen trap for use in vegetation studies. Journal of Vegetation Science, 1992, 3, 275-276.	2.2	26
115	Of orogeny, precipitation, precession and parrots. Journal of Biogeography, 2005, 32, 1301-1302.	3.0	26
116	Anthropogenic control of late-Holocene landscapes in the Cuzco region, Peru. Holocene, 2012, 22, 1361-1372.	1.7	26
117	Climate change and biogeographic connectivity across the Brazilian cerrado. Journal of Biogeography, 2020, 47, 396-407.	3.0	25
118	Climate and vegetation change in the lowlands of the Amazon Basin., 2011,, 61-84.		24
119	2,100 years of human adaptation to climate change in the High Andes. Nature Ecology and Evolution, 2020, 4, 66-74.	7.8	24
120	Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau. Science Advances, 2020, 6, eaaz4724.	10.3	24
121	Environmental determinism and neutrality in vegetation at millennial time scales. Journal of Vegetation Science, 2014, 25, 627-635.	2.2	23
122	Galápagos History, Restoration, and a Shifted Baseline. Restoration Ecology, 2014, 22, 296-298.	2.9	23
123	Colonization and Succession on Krakatau: An Analysis of the Guild of Vining Plants. Biotropica, 1995, 27, 355.	1.6	22
124	Quantifying ecological change through discriminant analysis: a paleoecological example from the Peruvian Amazon. Journal of Vegetation Science, 2010, 21, 695.	2.2	21
125	Holocene variability of an Amazonian hyperdominant. Journal of Ecology, 2016, 104, 1370-1378.	4.0	20
126	Longâ€ŧerm ecological legacies in western Amazonia. Journal of Ecology, 2021, 109, 432-446.	4.0	20

#	Article	IF	CITATIONS
127	The collapse of megafaunal populations in southeastern Brazil. Quaternary Research, 2018, 89, 103-118.	1.7	19
128	Climate change and the agricultural history of a mid-elevation Andean montane forest. Holocene, 2015, 25, 1522-1532.	1.7	18
129	Vegetation responses to late Holocene climate changes in an Andean forest. Quaternary Research, 2018, 89, 60-74.	1.7	18
130	Did ciguatera prompt the late Holocene Polynesian voyages of discovery?. Journal of Biogeography, 2009, 36, 1423-1432.	3.0	16
131	Fire and climate: contrasting pressures on tropical Andean timberline species. Journal of Biogeography, 2015, 42, 938-950.	3.0	16
132	Further evidence for localized, short-term anthropogenic forest alterations across pre-Columbian Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4118-E4119.	7.1	16
133	A 2000-year history of disturbance and recovery at a sacred site in Peru's northeastern cloud forest. Holocene, 2017, 27, 1707-1719.	1.7	16
134	Andean montane forests and climate change. , 2011, , 35-60.		16
135	Vegetation and hydrology changes in Eastern Amazonia inferred from a pollen record. Anais Da Academia Brasileira De Ciencias, 2008, 80, 191-203.	0.8	15
136	Environmental controls on the distribution and diversity of lentic Chironomidae (Insecta: Diptera) across an altitudinal gradient in tropical South America. Ecology and Evolution, 2016, 6, 91-112.	1.9	15
137	The Threat of Multiâ€Year Drought in Western Amazonia. Water Resources Research, 2018, 54, 5890-5904.	4.2	14
138	Climate change in the lowlands of the Amazon Basin. , 2007, , 55-76.		14
139	Early to mid-Holocene human activity exerted gradual influences on Amazonian forest vegetation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200498.	4.0	14
140	Scarce fire activity in north and north-western Amazonian forests during the last 10,000 years. Plant Ecology and Diversity, 2021, 14, 143-156.	2.4	14
141	Microrefugia and species persistence in the Gal \tilde{A}_i pagos highlands: a 26,000-year paleoecological perspective. Frontiers in Genetics, 2013, 4, 269.	2.3	13
142	Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past, 2016, 12, 697-711.	3 . 4	13
143	Brazilian montane rainforest expansion induced by Heinrich Stadial 1 event. Scientific Reports, 2019, 9, 17912.	3.3	13
144	700,000 years of tropical Andean glaciation. Nature, 2022, 607, 301-306.	27.8	13

#	Article	IF	Citations
145	Vegetation response to climatic changes in western Amazonia over the last 7,600Âyears. Journal of Biogeography, 2019, 46, 2389-2406.	3.0	10
146	Andean drought and glacial retreat tied to Greenland warming during the last glacial period. Nature Communications, 2020, 11, 5135.	12.8	10
147	Modern pollen assemblages of the Neotropics. Journal of Biogeography, 2021, 48, 231-241.	3.0	10
148	A Holocene pollen record of savanna establishment in coastal Amap \tilde{A}_i . Anais Da Academia Brasileira De Ciencias, 2008, 80, 341-351.	0.8	9
149	Comment on Clement <i>et al</i> . 2015 †The domestication of Amazonia before European conquest'. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151837.	2.6	9
150	BUMPER v1.0: a Bayesian user-friendly model for palaeo-environmental reconstruction. Geoscientific Model Development, 2017, 10, 483-498.	3.6	9
151	A palaeoecological perspective on the transformation of the tropical Andes by early human activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200497.	4.0	9
152	A biogeographic comment on: Wuster et al. (2005) Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus) Molecular Ecology, 2005, 14, 3615-3617.	3.9	8
153	Andean montane forests and climate change. , 2007, , 33-54.		8
154	Climate influences on water and sediment properties of Genovesa Crater Lake, $Gal\tilde{A}_i$ pagos. Journal of Paleolimnology, 2014, 52, 331-347.	1.6	8
155	Human-induced ecological cascades: Extinction, restoration, and rewilding in the $Gal ilde{A}_i$ pagos highlands. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
156	Last Glacial Maximum in an Andean cloud forest environment (Eastern Cordillera, Bolivia): Comment and Reply. Geology, 2003, 31, e26-e27.	4.4	7
157	Four centuries of vegetation change in the mid-elevation Andean forests of Ecuador. Vegetation History and Archaeobotany, 2019, 28, 679-689.	2.1	7
158	On the scaling and standardization of charcoal data in paleofire reconstructions. Frontiers of Biogeography, 2021, 13, .	1.8	7
159	Environmental Change in the Humid Tropics and MonsoonalRegions. , 0, , 113-140.		7
160	Predation and the cost of replication: New approaches to malware prevention?. Computers and Security, 2006, 25, 257-264.	6.0	6
161	Pollen recognition using a multi-layer hierarchical classifier. , 2016, , .		6
162	A 12,700-year history of paleolimnological change from an Andean microrefugium. Holocene, 2019, 29, 231-243.	1.7	6

#	Article	IF	CITATIONS
163	New and Repeating Tipping Points: The Interplay of Fire, Climate Change, and Deforestation in Neotropical Ecosystems. Annals of the Missouri Botanical Garden, 2020, 105, 393-404.	1.3	6
164	Potential distributions of pre-Columbian people in Tropical Andean landscapes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200502.	4.0	6
165	Glacial and interglacials in the Neotropics: a 130,000-year diatom record from central Panama. Journal of Paleolimnology, 2017, 58, 497-510.	1.6	5
166	Modern pollen rain predicts shifts in plant trait composition but not plant diversity along the Andesâ€"Amazon elevational gradient. Journal of Vegetation Science, 2021, 32, e12925.	2.2	5
167	Ecological resilience in tropical Andean lakes: A paleolimnological perspective. Limnology and Oceanography, 2022, 67, .	3.1	5
168	Anak Krakatau and old Krakatau: a reply. Geo Journal, 1993, 29, 417-420.	3.1	4
169	In search of the ice age tropics, a tribute to Prof. Daniel Livingstone and Prof. Paul Colinvaux. Quaternary Research, 2018, 89, 1-6.	1.7	4
170	When the grass wasn't greener: Megafaunal ecology and paleodroughts. Quaternary Science Reviews, 2021, 266, 107073.	3.0	4
171	Biotic Development of Quaternary Amazonia: A Palynological Perspective. , 2011, , 335-345.		3
172	Automated pollen identification system for forensic geo-historical location applications. , 2013, , .		3
173	Water quality and spatial and seasonal dynamics in the largest water supply reservoir in Brazil and implications for diatom assemblages. Acta Limnologica Brasiliensia, 0, 33, .	0.4	3
174	Classifying Frog Calls Using Gaussian Mixture Models. Lecture Notes in Computer Science, 2015, , 347-354.	1.3	1
175	Pollen recognition in optical microscopy by matching multifocal image sequences. , 2016, , .		1
176	Classifying Pollen Using Robust Sequence Alignment of Sparse Z-Stack Volumes. Lecture Notes in Computer Science, 2016, , 331-340.	1.3	1
177	Amazonian exploitation revisited: ecological asymmetry and the policy pendulum. Frontiers in Ecology and the Environment, 2007, 5, 457-465.	4.0	1
178	Highlights from the 2005 New Security Paradigms Workshop. , 0, , .		0
179	Expect The Unexpected: A Paleoecological View Of Rapid Climate Change. , 2009, , .		0
180	Quaternary Tropical Plant Extinction: A Paleoecological Perspective from the Neotropics. , 2012, , 199-214.		0

#	Article	IF	CITATIONS
181	Anak Krakatau and old Krakatau — a further comment. Geo Journal, 1994, 33, 491-492.	3.1	O
182	Anak Krakatau and old Krakatau -a Further Comment. Geo Journal, 1994, 34, 519-520.	3.1	0