## Stephen W Ragsdale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9066836/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF         | CITATIONS            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|
| 1  | Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO <sub>2</sub><br>Fixation. Chemical Reviews, 2013, 113, 6621-6658.                                                                             | 23.0       | 1,786                |
| 2  | Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2008, 1784, 1873-1898.                                                                                    | 1.1        | 971                  |
| 3  | The Many Faces of Vitamin B12: Catalysis by Cobalamin-Dependent Enzymes. Annual Review of Biochemistry, 2003, 72, 209-247.                                                                                                         | 5.0        | 672                  |
| 4  | A Ni-Fe-Cu Center in a Bifunctional Carbon Monoxide Dehydrogenase/ Acetyl-CoA Synthase. Science, 2002, 298, 567-572.                                                                                                               | 6.0        | 519                  |
| 5  | Structure, Function, and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA<br>Synthase. Chemical Reviews, 2014, 114, 4149-4174.                                                                             | 23.0       | 470                  |
| 6  | Efficient and Clean Photoreduction of CO <sub>2</sub> to CO by Enzyme-Modified TiO <sub>2</sub><br>Nanoparticles Using Visible Light. Journal of the American Chemical Society, 2010, 132, 2132-2133.                              | 6.6        | 392                  |
| 7  | Life with Carbon Monoxide. Critical Reviews in Biochemistry and Molecular Biology, 2004, 39, 165-195.                                                                                                                              | 2.3        | 346                  |
| 8  | Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase <sup>,</sup> . Chemical<br>Reviews, 1996, 96, 2515-2540.                                                                                                       | 23.0       | 333                  |
| 9  | Nickel-based Enzyme Systems. Journal of Biological Chemistry, 2009, 284, 18571-18575.                                                                                                                                              | 1.6        | 288                  |
| 10 | <i>Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis</i> . Annals of the New York Academy of Sciences, 2008, 1125, 129-136.                                                                                                 | 1.8        | 285                  |
| 11 | The complete genome sequence of <i>Moorella thermoacetica</i> (f. <i>Clostridium) Tj ETQq1 1 0.784314 rgBT</i>                                                                                                                     | Overlock I | 10 <u>7</u> f 50 342 |
| 12 | Enzymology of the Acetyl-CoA Pathway of CO <sub>2</sub> Fixation. Critical Reviews in Biochemistry and Molecular Biology, 1991, 26, 261-300.                                                                                       | 2.3        | 248                  |
| 13 | Pyruvate Ferredoxin Oxidoreductase and Its Radical Intermediate. Chemical Reviews, 2003, 103, 2333-2346.                                                                                                                           | 23.0       | 205                  |
| 14 | Visible light-driven CO <sub>2</sub> reduction by enzyme coupled CdS nanocrystals. Chemical<br>Communications, 2012, 48, 58-60.                                                                                                    | 2.2        | 184                  |
| 15 | Rapid and Efficient Electrocatalytic CO <sub>2</sub> /CO Interconversions by <i>Carboxydothermus<br/>hydrogenoformans</i> CO Dehydrogenase I on an Electrode. Journal of the American Chemical<br>Society, 2007, 129, 10328-10329. | 6.6        | 181                  |
| 16 | Metals and Their Scaffolds To Promote Difficult Enzymatic Reactions. Chemical Reviews, 2006, 106, 3317-3337.                                                                                                                       | 23.0       | 177                  |
| 17 | The Role of Pyruvate Ferredoxin Oxidoreductase in Pyruvate Synthesis during Autotrophic Growth by the Wood-Ljungdahl Pathway. Journal of Biological Chemistry, 2000, 275, 28494-28499.                                             | 1.6        | 162                  |
| 18 | CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy and Environmental Science, 2011, 4, 2393.                                                                                                                  | 15.6       | 155                  |

2

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry, 1990, 29, 1129-1135.                                      | 1.2  | 154       |
| 20 | Nickel and the carbon cycle. Journal of Inorganic Biochemistry, 2007, 101, 1657-1666.                                                                                                                                  | 1.5  | 153       |
| 21 | The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase. Science, 2016,<br>352, 953-958.                                                                                                  | 6.0  | 129       |
| 22 | Xenon in and at the End of the Tunnel of Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA<br>Synthase <sup>,</sup> . Biochemistry, 2008, 47, 3474-3483.                                                           | 1.2  | 116       |
| 23 | The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures.<br>Journal of Biological Inorganic Chemistry, 2004, 9, 511-515.                                                         | 1.1  | 112       |
| 24 | Nickel biochemistry. Current Opinion in Chemical Biology, 1998, 2, 208-215.                                                                                                                                            | 2.8  | 109       |
| 25 | Characterization of the nickel-iron-carbon complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR. Biochemistry, 1991, 30, 431-435.      | 1.2  | 104       |
| 26 | Spectroelectrochemical studies of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoaceticum. Biochemistry, 1989, 28, 9080-9087.                                          | 1.2  | 99        |
| 27 | Selective Visible-Light-Driven CO <sub>2</sub> Reduction on a p-Type Dye-Sensitized NiO Photocathode.<br>Journal of the American Chemical Society, 2014, 136, 13518-13521.                                             | 6.6  | 97        |
| 28 | Channeling of Carbon Monoxide during Anaerobic Carbon Dioxide Fixationâ€. Biochemistry, 2000, 39,<br>1274-1277.                                                                                                        | 1.2  | 89        |
| 29 | Characterization of a Three-Component Vanillate O -Demethylase from Moorella thermoacetica.<br>Journal of Bacteriology, 2001, 183, 3276-3281.                                                                          | 1.0  | 89        |
| 30 | Rapid Kinetic Studies of Acetyl-CoA Synthesis:Â Evidence Supporting the Catalytic Intermediacy of a<br>Paramagnetic NiFeC Species in the Autotrophic Woodâ^'Ljungdahl Pathwayâ€. Biochemistry, 2002, 41,<br>1807-1819. | 1.2  | 89        |
| 31 | Thiol-disulfide Redox Dependence of Heme Binding and Heme Ligand Switching in Nuclear Hormone<br>Receptor Rev-erbl². Journal of Biological Chemistry, 2011, 286, 4392-4403.                                            | 1.6  | 85        |
| 32 | Evidence That NiNi Acetyl-CoA Synthase Is Active and That the CuNi Enzyme Is Notâ€. Biochemistry, 2004,<br>43, 3944-3955.                                                                                              | 1.2  | 83        |
| 33 | Fast and Selective Photoreduction of CO <sub>2</sub> to CO Catalyzed by a Complex of Carbon<br>Monoxide Dehydrogenase, TiO <sub>2</sub> , and Ag Nanoclusters. ACS Catalysis, 2018, 8, 2789-2795.                      | 5.5  | 82        |
| 34 | The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won.<br>BioFactors, 1997, 6, 3-11.                                                                                          | 2.6  | 81        |
| 35 | Characterization of the B12- and Iron-Sulfur-containing Reductive Dehalogenase<br>fromDesulfitobacterium chlororespirans. Journal of Biological Chemistry, 2001, 276, 40991-40997.                                     | 1.6  | 77        |
| 36 | Visualizing molecular juggling within a B12-dependent methyltransferase complex. Nature, 2012, 484, 265-269.                                                                                                           | 13.7 | 77        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of<br>H <sub>2</sub> Production and CO <sub>2</sub> Reduction. Journal of the American Chemical Society,<br>2013, 135, 15026-15032. | 6.6 | 77        |
| 38 | Kinetic evidence that carbon monoxide dehydrogenase catalyzes the oxidation of carbon monoxide<br>and the synthesis of acetyl-CoA at separate metal clusters. Journal of the American Chemical Society,<br>1993, 115, 11646-11647. | 6.6 | 76        |
| 39 | Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase.<br>Structure, 2000, 8, 817-830.                                                                                                          | 1.6 | 76        |
| 40 | Unleashing Hydrogenase Activity in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase and<br>Pyruvate:Ferredoxin Oxidoreductaseâ€. Biochemistry, 1996, 35, 15814-15821.                                                             | 1.2 | 75        |
| 41 | Evidence That the Heme Regulatory Motifs in Heme Oxygenase-2 Serve as a Thiol/Disulfide Redox Switch<br>Regulating Heme Binding*. Journal of Biological Chemistry, 2007, 282, 21056-21067.                                         | 1.6 | 74        |
| 42 | Identification of a Thiol/Disulfide Redox Switch in the Human BK Channel That Controls Its Affinity for Heme and CO. Journal of Biological Chemistry, 2010, 285, 20117-20127.                                                      | 1.6 | 72        |
| 43 | Characterization of the carbon monoxide binding site of carbon monoxide dehydrogenase from<br>Clostridium thermoaceticum by infrared spectroscopy. Journal of the American Chemical Society,<br>1992, 114, 8713-8715.              | 6.6 | 70        |
| 44 | Mechanism of the Clostridium thermoaceticum Pyruvate:Ferredoxin Oxidoreductase:  Evidence for the<br>Common Catalytic Intermediacy of the Hydroxyethylthiamine Pyropyrosphate Radical. Biochemistry,<br>1997, 36, 8484-8494.       | 1.2 | 70        |
| 45 | Crystallographic Snapshots of Cyanide- and Water-Bound C-Clusters from Bifunctional Carbon<br>Monoxide Dehydrogenase/Acetyl-CoA Synthase,. Biochemistry, 2009, 48, 7432-7440.                                                      | 1.2 | 70        |
| 46 | Functional copper at the acetyl-CoA synthase active site. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3689-3694.                                                                   | 3.3 | 69        |
| 47 | Heme Regulatory Motifs in Heme Oxygenase-2 Form a Thiol/Disulfide Redox Switch That Responds to the Cellular Redox State. Journal of Biological Chemistry, 2009, 284, 20556-20561.                                                 | 1.6 | 68        |
| 48 | Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics, 2011, 3, 797.                                                                                                                                      | 1.0 | 67        |
| 49 | Role of the [4Fe-4S] Cluster in Reductive Activation of the Cobalt Center of the Corrinoid<br>Ironâ^'Sulfur Protein from Clostridium thermoaceticum during Acetate Biosynthesis. Biochemistry,<br>1998, 37, 5689-5698.             | 1.2 | 66        |
| 50 | EPR Spectroscopic and Computational Characterization of the Hydroxyethylidene-Thiamine<br>Pyrophosphate Radical Intermediate of Pyruvate:Ferredoxin Oxidoreductaseâ€. Biochemistry, 2006, 45,<br>7122-7131.                        | 1.2 | 66        |
| 51 | Biochemical and Spectroscopic Studies of the Electronic Structure and Reactivity of a Methylâ^'Ni<br>Species Formed on Methyl-Coenzyme M Reductase. Journal of the American Chemical Society, 2007, 129,<br>11030-11032.           | 6.6 | 65        |
| 52 | On the Assignment of Nickel Oxidation States of the Ox1, Ox2 Forms of Methylâ^'Coenzyme M Reductase.<br>Journal of the American Chemical Society, 2000, 122, 182-183.                                                              | 6.6 | 64        |
| 53 | Mechanistic Studies of Methane Biogenesis by Methyl-Coenzyme M Reductase:Â Evidence that Coenzyme<br>B Participates in Cleaving the Câ^'S Bond of Methyl-Coenzyme Mâ€. Biochemistry, 2001, 40, 12875-12885.                        | 1.2 | 64        |
| 54 | Activation of Methyl-SCoM Reductase to High Specific Activity after Treatment of Whole Cells with Sodium Sulfideâ€. Biochemistry, 1998, 37, 2639-2647.                                                                             | 1.2 | 63        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Role of an Iron-Sulfur Cluster in an Enzymatic Methylation Reaction. Journal of Biological Chemistry, 1999, 274, 11513-11518.                                                                                                                    | 1.6 | 63        |
| 56 | Cryoreduction of Methyl-Coenzyme M Reductase:Â EPR Characterization of Forms, MCRox1and MCRred1.<br>Journal of the American Chemical Society, 2001, 123, 5853-5860.                                                                                  | 6.6 | 61        |
| 57 | Mechanism of Carbon Monoxide Oxidation by the Carbon Monoxide Dehydrogenase/Acetyl-CoA<br>Synthase from Clostridium thermoaceticum:  Kinetic Characterization of the Intermediates.<br>Biochemistry, 1997, 36, 11241-11251.                          | 1.2 | 60        |
| 58 | EPR and Infrared Spectroscopic Evidence That a Kinetically Competent Paramagnetic Intermediate is<br>Formed When Acetyl-Coenzyme A Synthase Reacts with CO. Journal of the American Chemical Society,<br>2005, 127, 13500-13501.                     | 6.6 | 60        |
| 59 | A Unified Electrocatalytic Description of the Action of Inhibitors of Nickel Carbon Monoxide<br>Dehydrogenase. Journal of the American Chemical Society, 2013, 135, 2198-2206.                                                                       | 6.6 | 60        |
| 60 | Evidence That Carbon Monoxide Is an Obligatory Intermediate in Anaerobic Acetyl-CoA Synthesisâ€.<br>Biochemistry, 1996, 35, 12119-12125.                                                                                                             | 1.2 | 56        |
| 61 | Comparison of Apo- and Heme-bound Crystal Structures of a Truncated Human Heme Oxygenase-2.<br>Journal of Biological Chemistry, 2007, 282, 37624-37631.                                                                                              | 1.6 | 56        |
| 62 | Nickel–Iron–Sulfur Active Sites: Hydrogenase and Co Dehydrogenase. Advances in Inorganic<br>Chemistry, 1999, 47, 283-333.                                                                                                                            | 0.4 | 55        |
| 63 | Waterâ^'Gas Shift Reaction Catalyzed by Redox Enzymes on Conducting Graphite Platelets. Journal of the American Chemical Society, 2009, 131, 14154-14155.                                                                                            | 6.6 | 55        |
| 64 | Structural Insight into Methyl-Coenzyme M Reductase Chemistry Using Coenzyme B Analogues,.<br>Biochemistry, 2010, 49, 7683-7693.                                                                                                                     | 1.2 | 55        |
| 65 | Nickel Oxidation States of F430Cofactor in Methyl-Coenzyme M Reductase. Journal of the American Chemical Society, 2004, 126, 4068-4069.                                                                                                              | 6.6 | 53        |
| 66 | Catalysis of Methyl Group Transfers Involving Tetrahydrofolate and B12. Vitamins and Hormones, 2008, 79, 293-324.                                                                                                                                    | 0.7 | 52        |
| 67 | <sup>13</sup> C NMR Characterization of an Exchange Reaction between CO and CO <sub>2</sub><br>Catalyzed by Carbon Monoxide Dehydrogenase. Biochemistry, 2008, 47, 6770-6781.                                                                        | 1.2 | 52        |
| 68 | The Reaction Mechanism of Methyl-Coenzyme M Reductase. Journal of Biological Chemistry, 2015, 290,<br>9322-9334.                                                                                                                                     | 1.6 | 52        |
| 69 | Mechanistic Studies of the Methyltransferase from Clostridium thermoaceticum: Origin of the pH<br>Dependence of the Methyl Group Transfer from Methyl Tetrahydrofolate to the<br>Corrinoid/Iron-Sulfur Protein. Biochemistry, 1995, 34, 15075-15083. | 1.2 | 51        |
| 70 | Infrared Studies of Carbon Monoxide Binding to Carbon Monoxide Dehydrogenase/Acetyl-CoA<br>Synthase from Moorella thermoacetica. Biochemistry, 2003, 42, 14822-14830.                                                                                | 1.2 | 51        |
| 71 | Spectroscopic Studies of the Corrinoid/Ironâ~'Sulfur Protein fromMoorella thermoacetica. Journal of the American Chemical Society, 2006, 128, 5010-5020.                                                                                             | 6.6 | 51        |
| 72 | The Roles of Coenzyme A in the Pyruvate:Ferredoxin Oxidoreductase Reaction Mechanism:Â Rate<br>Enhancement of Electron Transfer from a Radical Intermediate to an Ironâ^'Sulfur Clusterâ€.<br>Biochemistry, 2002, 41, 9921-9937.                     | 1.2 | 50        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Pulse-Chase Studies of the Synthesis of Acetyl-CoA by Carbon Monoxide Dehydrogenase/Acetyl-CoA<br>Synthase. Journal of Biological Chemistry, 2008, 283, 8384-8394.                                                                                       | 1.6 | 50        |
| 74 | Binding of Carbon Disulfide to the Site of Acetyl-CoA Synthesis by the Nickel-Iron-Sulfur Protein,<br>Carbon Monoxide Dehydrogenase, from Clostridium thermoaceticum. Biochemistry, 1994, 33, 9769-9777.                                                 | 1.2 | 48        |
| 75 | X-ray Absorption and Resonance Raman Studies of Methyl-Coenzyme M Reductase Indicating That<br>Ligand Exchange and Macrocycle Reduction Accompany Reductive Activationâ€. Journal of the American<br>Chemical Society, 2002, 124, 13242-13256.           | 6.6 | 48        |
| 76 | Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. Journal of Bacteriology, 2016, 198, 3379-3390.                                                                                          | 1.0 | 48        |
| 77 | Anaerobic Pathway for Conversion of the Methyl Group of Aromatic Methyl Ethers to Acetic Acid by Clostridium thermoaceticum. Biochemistry, 1994, 33, 11217-11224.                                                                                        | 1.2 | 47        |
| 78 | Geometric and Electronic Structures of the Ni <sup>I</sup> and Methylâ^'Ni <sup>III</sup> Intermediates of Methyl-Coenzyme M Reductase. Biochemistry, 2009, 48, 3146-3156.                                                                               | 1.2 | 47        |
| 79 | Thiol/Disulfide Redox Switches in the Regulation of Heme Binding to Proteins. Antioxidants and Redox Signaling, 2011, 14, 1039-1047.                                                                                                                     | 2.5 | 45        |
| 80 | High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its<br>Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. Journal of<br>Biological Chemistry, 2016, 291, 2196-2222. | 1.6 | 45        |
| 81 | Nucleotide Excision Repair in the Third Kingdom. Journal of Bacteriology, 1998, 180, 5796-5798.                                                                                                                                                          | 1.0 | 45        |
| 82 | Structural Analysis of a Ni-Methyl Species in Methyl-Coenzyme M Reductase from<br><i>Methanothermobacter marburgensis</i> . Journal of the American Chemical Society, 2011, 133,<br>5626-5628.                                                           | 6.6 | 44        |
| 83 | Detection of Organometallic and Radical Intermediates in the Catalytic Mechanism of<br>Methyl-Coenzyme M Reductase Using the Natural Substrate Methyl-Coenzyme M and a Coenzyme B<br>Substrate Analogue. Biochemistry, 2010, 49, 10902-10911.            | 1.2 | 43        |
| 84 | The F420H2:heterodisulfide oxidoreductase system fromMethanosarcinaspecies. FEBS Letters, 1998, 428, 295-298.                                                                                                                                            | 1.3 | 41        |
| 85 | Regulation of Anaerobic Dehalorespiration by the Transcriptional Activator CprK. Journal of<br>Biological Chemistry, 2004, 279, 49910-49918.                                                                                                             | 1.6 | 41        |
| 86 | Infrared and EPR Spectroscopic Characterization of a Ni(I) Species Formed by Photolysis of a<br>Catalytically Competent Ni(I)-CO Intermediate in the Acetyl-CoA Synthase Reaction. Biochemistry, 2010,<br>49, 7516-7523.                                 | 1.2 | 41        |
| 87 | Structural and Kinetic Evidence for an Extended Hydrogen-bonding Network in Catalysis of Methyl<br>Group Transfer. Journal of Biological Chemistry, 2007, 282, 6609-6618.                                                                                | 1.6 | 39        |
| 88 | Redox Centers of 4-Hydroxybenzoyl-CoA Reductase, a Member of the Xanthine Oxidase Family of<br>Molybdenum-containing Enzymes. Journal of Biological Chemistry, 2001, 276, 47853-47862.                                                                   | 1.6 | 37        |
| 89 | Investigations of Two Bidirectional Carbon Monoxide Dehydrogenases from <i>Carboxydothermus<br/>hydrogenoformans</i> by Protein Film Electrochemistry. ChemBioChem, 2013, 14, 1845-1851.                                                                 | 1.3 | 37        |
| 90 | A spectroelectrochemical cell designed for low temperature electron paramagnetic resonance titration of oxygen-sensitive proteins. Analytical Biochemistry, 1989, 181, 283-287.                                                                          | 1.1 | 36        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pulsed Electron Paramagnetic Resonance Experiments Identify the Paramagnetic Intermediates in the<br>Pyruvate Ferredoxin Oxidoreductase Catalytic Cycle. Journal of the American Chemical Society, 2006,<br>128, 3888-3889.                                                                          | 6.6 | 35        |
| 92  | Characterization of Alkyl-Nickel Adducts Generated by Reaction of Methyl-Coenzyme M Reductase with Brominated Acids. Biochemistry, 2007, 46, 11969-11978.                                                                                                                                            | 1.2 | 35        |
| 93  | X-ray absorption spectroscopy of the corrinoid/iron-sulfur protein involved in acetyl coenzyme A synthesis by Clostridium thermoaceticum. Journal of the American Chemical Society, 1993, 115, 2146-2150.                                                                                            | 6.6 | 34        |
| 94  | Mechanism of Transfer of the Methyl Group from (6S)-Methyltetrahydrofolate to the<br>Corrinoid/Ironâ^'Sulfur Protein Catalyzed by the Methyltransferase fromClostridium thermoaceticum:Â<br>A Key Step in the Woodâ^'Ljungdahl Pathway of Acetyl-CoA Synthesisâ€. Biochemistry, 1999, 38, 5728-5735. | 1.2 | 34        |
| 95  | Nitrate-Dependent Regulation of Acetate Biosynthesis and Nitrate Respiration by <i>Clostridium thermoaceticum</i> . Journal of Bacteriology, 1999, 181, 1489-1495.                                                                                                                                   | 1.0 | 34        |
| 96  | The heme-regulatory motif of nuclear receptor Rev-erbÎ <sup>2</sup> is a key mediator of heme and redox signaling<br>in circadian rhythm maintenance and metabolism. Journal of Biological Chemistry, 2017, 292,<br>11280-11299.                                                                     | 1.6 | 33        |
| 97  | Characterization of the Intramolecular Electron Transfer Pathway from 2-Hydroxyphenazine to the<br>Heterodisulfide Reductase fromMethanosarcina thermophila. Journal of Biological Chemistry, 2001,<br>276, 2432-2439.                                                                               | 1.6 | 31        |
| 98  | Freeze-quench resonance Raman spectroscopic evidence for an Fe-CO adduct during acetyl-CoA<br>synthesis and Ni involvement in CO oxidation by carbon monoxide dehydrogenase from Clostridium<br>thermoaceticum. Journal of the American Chemical Society, 1995, 117, 2653-2654.                      | 6.6 | 30        |
| 99  | CprK Crystal Structures Reveal Mechanism for Transcriptional Control of Halorespiration. Journal of Biological Chemistry, 2006, 281, 28318-28325.                                                                                                                                                    | 1.6 | 30        |
| 100 | Spectroscopic and Kinetic Studies of the Reaction of Bromopropanesulfonate with Methyl-coenzyme<br>M Reductase. Journal of Biological Chemistry, 2006, 281, 34663-34676.                                                                                                                             | 1.6 | 30        |
| 101 | Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step<br>in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane. Metal Ions in<br>Life Sciences, 2014, 14, 125-145.                                                      | 2.8 | 30        |
| 102 | Investigations by Protein Film Electrochemistry of Alternative Reactions of Nickel-Containing Carbon<br>Monoxide Dehydrogenase. Journal of Physical Chemistry B, 2015, 119, 13690-13697.                                                                                                             | 1.2 | 30        |
| 103 | Structure determination of the HgcAB complex using metagenome sequence data: insights into microbial mercury methylation. Communications Biology, 2020, 3, 320.                                                                                                                                      | 2.0 | 30        |
| 104 | Protein/Protein Interactions in the Mammalian Heme Degradation Pathway. Journal of Biological Chemistry, 2014, 289, 29836-29858.                                                                                                                                                                     | 1.6 | 29        |
| 105 | Acetyl Coenzyme A Synthesis from Unnatural Methylated Corrinoids: Requirement for "Base-Off―<br>Coordination at Cobalt. Journal of the American Chemical Society, 2001, 123, 1786-1787.                                                                                                              | 6.6 | 28        |
| 106 | Transcriptional Activation of Dehalorespiration. Journal of Biological Chemistry, 2006, 281, 26382-26390.                                                                                                                                                                                            | 1.6 | 28        |
| 107 | Targeting Methanopterin Biosynthesis ToInhibitMethanogenesis. Applied and Environmental Microbiology, 2003, 69, 7236-7241.                                                                                                                                                                           | 1.4 | 27        |
| 108 | Spectroscopic and computational characterization of the nickel-containing F430 cofactor of methyl-coenzyme M reductase. Journal of Biological Inorganic Chemistry, 2004, 9, 77-89.                                                                                                                   | 1.1 | 26        |

STEPHEN W RAGSDALE

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Characterization of the Thioether Product Formed from the Thiolytic Cleavage of the Alkylâ^'Nickel<br>Bond in Methyl-Coenzyme M Reductase. Biochemistry, 2008, 47, 2661-2667.                                                                      | 1.2 | 26        |
| 110 | Evidence That Ferredoxin Interfaces with an Internal Redox Shuttle in Acetyl-CoA Synthase during Reductive Activation and Catalysis. Biochemistry, 2011, 50, 276-286.                                                                              | 1.2 | 26        |
| 111 | The C-Terminal Heme Regulatory Motifs of Heme Oxygenase-2 Are Redox-Regulated Heme Binding Sites.<br>Biochemistry, 2015, 54, 2709-2718.                                                                                                            | 1.2 | 26        |
| 112 | X-ray Absorption Spectroscopy Reveals an Organometallic Ni–C Bond in the CO-Treated Form of<br>Acetyl-CoA Synthase. Biochemistry, 2017, 56, 1248-1260.                                                                                             | 1.2 | 25        |
| 113 | Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. Journal of<br>Biological Chemistry, 2020, 295, 17227-17240.                                                                                            | 1.6 | 24        |
| 114 | Raman and Infrared Spectroscopy of Cyanide-Inhibited CO Dehydrogenase/Acetyl-CoA Synthase<br>fromClostridium thermoaceticum:Â Evidence for Bimetallic Enzymatic CO Oxidation. Journal of the<br>American Chemical Society, 1996, 118, 10429-10435. | 6.6 | 23        |
| 115 | Evidence for Intersubunit Communication during Acetyl-CoA Cleavage by the Multienzyme CO<br>Dehydrogenase/Acetyl-CoA Synthase Complex from Methanosarcina thermophila. Journal of<br>Biological Chemistry, 2000, 275, 4699-4707.                   | 1.6 | 23        |
| 116 | Modulation of nuclear receptor function by cellular redox poise. Journal of Inorganic Biochemistry, 2014, 133, 92-103.                                                                                                                             | 1.5 | 23        |
| 117 | Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme<br>Regulatory Motifs. Antioxidants and Redox Signaling, 2018, 29, 1841-1857.                                                                              | 2.5 | 23        |
| 118 | Binding of (6R,S)-Methyltetrahydrofolate to Methyltransferase fromClostridium thermoaceticum:Â<br>Role of Protonation of Methyltetrahydrofolate in the Mechanism of Methyl Transferâ€. Biochemistry,<br>1999, 38, 5736-5745.                       | 1.2 | 22        |
| 119 | Kinetics of Enzymatic Mercury Methylation at Nanomolar Concentrations Catalyzed by HgcAB. Applied and Environmental Microbiology, 2019, 85, .                                                                                                      | 1.4 | 20        |
| 120 | n-Butyl isocyanide: A structural and functional analog of carbon monoxide for carbon monoxide<br>dehydrogenase from Clostridium thermoaceticum. Journal of the American Chemical Society, 1995, 117,<br>11604-11605.                               | 6.6 | 19        |
| 121 | Mechanism of 4-(β-D-Ribofuranosyl)aminobenzene 5′-Phosphate Synthase, a Key Enzyme in the<br>Methanopterin Biosynthetic Pathway. Journal of Biological Chemistry, 2004, 279, 39389-39395.                                                          | 1.6 | 19        |
| 122 | Radical reactions of thiamin pyrophosphate in 2-oxoacid oxidoreductases. Biochimica Et Biophysica<br>Acta - Proteins and Proteomics, 2012, 1824, 1291-1298.                                                                                        | 1.1 | 19        |
| 123 | In vivo activation of methyl-coenzyme M reductase by carbon monoxide. Frontiers in Microbiology, 2013, 4, 69.                                                                                                                                      | 1.5 | 19        |
| 124 | Binding site for coenzyme A revealed in the structure of pyruvate:ferredoxin oxidoreductase from<br><i>Moorella thermoacetica</i> . Proceedings of the National Academy of Sciences of the United States<br>of America, 2018, 115, 3846-3851.      | 3.3 | 19        |
| 125 | Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 659-682.e1.                                             | 2.3 | 19        |
| 126 | Crystallographic Characterization of the Carbonylated A-Cluster in Carbon Monoxide<br>Dehydrogenase/Acetyl-CoA Synthase. ACS Catalysis, 2020, 10, 9741-9746.                                                                                       | 5.5 | 19        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Ferric heme as a CO/NO sensor in the nuclear receptor Rev-Erbß by coupling gas binding to electron<br>transfer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                             | 3.3 | 19        |
| 128 | Identification and Characterization of Oxalate Oxidoreductase, a Novel Thiamine<br>Pyrophosphate-dependent 2-Oxoacid Oxidoreductase That Enables Anaerobic Growth on Oxalate.<br>Journal of Biological Chemistry, 2010, 285, 40515-40524. | 1.6 | 18        |
| 129 | Observation of Organometallic and Radical Intermediates Formed during the Reaction of<br>Methyl-Coenzyme M Reductase with Bromoethanesulfonate. Biochemistry, 2010, 49, 6866-6876.                                                        | 1.2 | 18        |
| 130 | Transient B <sub>12</sub> -Dependent Methyltransferase Complexes Revealed by Small-Angle X-ray<br>Scattering. Journal of the American Chemical Society, 2012, 134, 17945-17954.                                                           | 6.6 | 18        |
| 131 | Protonation of the Hydroperoxo Intermediate of Cytochrome P450 2B4 Is Slower in the Presence of<br>Cytochrome P450 Reductase Than in the Presence of Cytochrome b5. Biochemistry, 2016, 55, 6558-6567.                                    | 1.2 | 18        |
| 132 | Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions. Journal of Biological Chemistry, 2019, 294, 8259-8272.                                                             | 1.6 | 17        |
| 133 | Azide Binding to Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum. Journal of the<br>American Chemical Society, 1995, 117, 2939-2940.                                                                                        | 6.6 | 16        |
| 134 | The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. Journal of Biological Chemistry, 2020, 295, 5177-5191.                                                           | 1.6 | 16        |
| 135 | Electrochemical and Spectroscopic Properties of the Iron-Sulfur Flavoprotein from Methanosarcina<br>thermophila. Journal of Biological Chemistry, 1998, 273, 26462-26469.                                                                 | 1.6 | 15        |
| 136 | The Structure of an Oxalate Oxidoreductase Provides Insight into Microbial 2-Oxoacid Metabolism.<br>Biochemistry, 2015, 54, 4112-4120.                                                                                                    | 1.2 | 15        |
| 137 | Spectroscopic Studies Reveal That the Heme Regulatory Motifs of Heme Oxygenase-2 Are Dynamically Disordered and Exhibit Redox-Dependent Interaction with Heme. Biochemistry, 2015, 54, 2693-2708.                                         | 1.2 | 15        |
| 138 | Rapid Ligand Exchange in the MCRred1 Form of Methyl-coenzyme M Reductase. Journal of the American<br>Chemical Society, 2003, 125, 2436-2443.                                                                                              | 6.6 | 14        |
| 139 | Dual Roles of an Essential Cysteine Residue in Activity of a Redox-regulated Bacterial Transcriptional Activator. Journal of Biological Chemistry, 2008, 283, 28721-28728.                                                                | 1.6 | 13        |
| 140 | Redox, haem and CO in enzymatic catalysis and regulation. Biochemical Society Transactions, 2012, 40, 501-507.                                                                                                                            | 1.6 | 13        |
| 141 | Investigations of the Efficient Electrocatalytic Interconversions of Carbon Dioxide and Carbon<br>Monoxide by Nickel-Containing Carbon Monoxide Dehydrogenases. Metal Ions in Life Sciences, 2014, 14,<br>71-97.                          | 2.8 | 13        |
| 142 | One-carbon chemistry of oxalate oxidoreductase captured by X-ray crystallography. Proceedings of the United States of America, 2016, 113, 320-325.                                                                                        | 3.3 | 13        |
| 143 | Spectroscopic insights into axial ligation and active-site H-bonding in substrate-bound human heme oxygenase-2. Journal of Biological Inorganic Chemistry, 2010, 15, 1117-1127.                                                           | 1.1 | 12        |
| 144 | Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins. Journal of Biomolecular NMR, 2011, 49, 69-74.                                                                               | 1.6 | 12        |

| #   | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Nickel–Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM<br>Reductase Suggest a Radical Mechanism Involving Long-Range Electron Transfer. Journal of the<br>American Chemical Society, 2021, 143, 5481-5496.                        | 6.6  | 12        |
| 146 | ENDOR Studies of Pyruvate:Ferredoxin Oxidoreductase Reaction Intermediates. Journal of the American Chemical Society, 1999, 121, 3724-3729.                                                                                                                            | 6.6  | 10        |
| 147 | Spectroscopic and Computational Studies of Reduction of the Metal versus the Tetrapyrrole Ring of Coenzyme F430from Methyl-Coenzyme M Reductaseâ€. Biochemistry, 2006, 45, 11915-11933.                                                                                | 1.2  | 10        |
| 148 | Stealth reactions driving carbon fixation. Science, 2018, 359, 517-518.                                                                                                                                                                                                | 6.0  | 10        |
| 149 | Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. Journal of Biological Chemistry, 2022, 298, 101549.                                                                                                                      | 1.6  | 10        |
| 150 | Comparison of the Mechanisms of Heme Hydroxylation by Heme Oxygenases-1 and -2: Kinetic and Cryoreduction Studies. Biochemistry, 2016, 55, 62-68.                                                                                                                      | 1.2  | 9         |
| 151 | <sup>13</sup> C Electron Nuclear Double Resonance Spectroscopy Shows Acetyl-CoA Synthase Binds<br>Two Substrate CO in Multiple Binding Modes and Reveals the Importance of a CO-Binding "Alcoveâ€<br>Journal of the American Chemical Society, 2020, 142, 15362-15370. | 6.6  | 9         |
| 152 | Negative-Stain Electron Microscopy Reveals Dramatic Structural Rearrangements in Ni-Fe-S-Dependent<br>Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Structure, 2021, 29, 43-49.e3.                                                                                | 1.6  | 9         |
| 153 | An unlikely heme chaperone confirmed at last. Journal of Biological Chemistry, 2018, 293, 14569-14570.                                                                                                                                                                 | 1.6  | 8         |
| 154 | Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 16-47.                                                                                                       | 2.3  | 8         |
| 155 | Production and properties of enzymes that activate and produce carbon monoxide. Methods in Enzymology, 2018, 613, 297-324.                                                                                                                                             | 0.4  | 7         |
| 156 | Evidence for Organometallic Intermediates in Bacterial Methane Formation Involving the Nickel<br>Coenzyme F430. Metal Ions in Life Sciences, 2010, , 71-110.                                                                                                           | 1.0  | 6         |
| 157 | XFEL serial crystallography reveals the room temperature structure of methyl-coenzyme M reductase.<br>Journal of Inorganic Biochemistry, 2022, 230, 111768.                                                                                                            | 1.5  | 6         |
| 158 | Antioxidant Molecules and Redox Cofactors. , 0, , 11-47.                                                                                                                                                                                                               |      | 5         |
| 159 | How two amino acids become one. Nature, 2011, 471, 583-584.                                                                                                                                                                                                            | 13.7 | 5         |
| 160 | Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide<br>Inactivation by Pyruvate. Biochemistry, 2017, 56, 2824-2835.                                                                                                           | 1.2  | 5         |
| 161 | Efficient, Light-Driven Reduction of CO <sub>2</sub> to CO by a Carbon Monoxide<br>Dehydrogenase–CdSe/CdS Nanorod Photosystem. Journal of Physical Chemistry Letters, 2022, 13,<br>5553-5556.                                                                          | 2.1  | 4         |
| 162 | Metal–carbon bonds in enzymes and cofactors. Coordination Chemistry Reviews, 2010, 254, 1948-1949.                                                                                                                                                                     | 9.5  | 3         |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Targeting methanogenesis with a nitrooxypropanol bullet. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6100-6101.                | 3.3  | 3         |
| 164 | Elusive microbe that consumes ethane found under the sea. Nature, 2019, 568, 40-41.                                                                                            | 13.7 | 3         |
| 165 | Expanding the Biological Periodic Table. Chemistry and Biology, 2010, 17, 793-794.                                                                                             | 6.2  | 2         |
| 166 | Characterization of the carbonylation and methylation sites in carbon monoxide dehydrogenase from clostridium thermoaceticum Journal of Inorganic Biochemistry, 1993, 51, 233. | 1.5  | 1         |
| 167 | Deep-sea secrets of butane metabolism. Nature, 2016, 539, 367-368.                                                                                                             | 13.7 | 1         |
| 168 | Specialized Methods. , 0, , 227-284.                                                                                                                                           |      | 0         |
| 169 | Pathological Processes Related to Redox. , 0, , 183-225.                                                                                                                       |      | 0         |
| 170 | Redox Metabolism and Life. , 0, , 1-9.                                                                                                                                         |      | 0         |
| 171 | Redox Regulation of Physiological Processes. , 0, , 135-182.                                                                                                                   |      | 0         |
| 172 | Preface. Methods in Enzymology, 2011, 495, xv-xvi.                                                                                                                             | 0.4  | 0         |
| 173 | Thiol/Disulfide Redox Switches as a Regulatory Mechanism in Heme-binding Proteins. Handbook of<br>Porphyrin Science, 2013, , 31-54.                                            | 0.3  | 0         |
| 174 | 3 Evidence for Organometallic Intermediates in Bacterial Methane Formation Involving the Nickel Coenzyme F <sub>430</sub> . , 2015, , 71-110.                                  |      | 0         |
| 175 | Catalysis by Microsomal Cytochrome P450 2B4 Proceeds via a "Stable Hydroperoxo―Intermediate<br>Identified by Freeze Quench EPR. FASEB Journal, 2010, 24, 512.8.                | 0.2  | 0         |
| 176 | Crystallographic snapshots of metalloenzyme complexes involved in biological carbon dioxide sequestration. FASEB Journal, 2013, 27, 98.3.                                      | 0.2  | 0         |
| 177 | Conformational changes of the carbonâ€fixing enzyme CODH/ACS revealed by electron microscopy.<br>FASEB Journal, 2013, 27, lb236.                                               | 0.2  | 0         |
| 178 | Dramatic Conformational Flexibility of Carbon Monoxide Dehydrogenase/Acetyl oA Synthase<br>Revealed by Electron Microscopy. FASEB Journal, 2015, 29, 573.37.                   | 0.2  | 0         |
| 179 | Not a "they―but a "we― The microbiome helps promote our well-being. Journal of Biological<br>Chemistry, 2022, 298, 101511.                                                     | 1.6  | 0         |