Jürgen Lassak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9065611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biological Chemistry, 2022, 403, 819-858.	2.5	7
2	ldentification of <i>Pseudomonas asiatica</i> subsp. <i>bavariensis</i> str. <scp>JM1</scp> as the first <i>N</i> _{<i>ε</i>} arboxy(m)ethyllysineâ€degrading soil bacterium. Environmental Microbiology, 2022, 24, 3229-3241.	3.8	4
3	Synthetic postâ€ŧranslational modifications of elongation factor P using the ligase EpmA. FEBS Journal, 2021, 288, 663-677.	4.7	5
4	Transcriptional regulation of the <i>N</i> _ε â€fructoselysine metabolism in <i>Escherichia coli</i> by global and substrateâ€specific cues. Molecular Microbiology, 2021, 115, 175-190.	2.5	10
5	Proline codon pair selection determines ribosome pausing strength and translation efficiency in bacteria. Communications Biology, 2021, 4, 589.	4.4	13
6	Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-d-glucose epimerization in Pseudomonas putida KT2440. Scientific Reports, 2021, 11, 11991.	3.3	6
7	A β-hairpin epitope as novel structural requirement for protein arginine rhamnosylation. Chemical Science, 2021, 12, 1560-1567.	7.4	4
8	A set of rhamnosylation-specific antibodies enables detection of novel protein glycosylations in bacteria. Organic and Biomolecular Chemistry, 2020, 18, 6823-6828.	2.8	5
9	Molecular Design of a Signaling System Influences Noise in Protein Abundance under Acid Stress in Different Gammaproteobacteria. Journal of Bacteriology, 2020, 202, .	2.2	14
10	Highlight: young research groups in Germany– 3rd edition. Biological Chemistry, 2020, 402, 5-6.	2.5	1
11	Switching the Post-translational Modification of Translation Elongation Factor EF-P. Frontiers in Microbiology, 2019, 10, 1148.	3.5	16
12	Exceptionally versatile – arginine in bacterial post-translational protein modifications. Biological Chemistry, 2019, 400, 1397-1427.	2.5	15
13	Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biology, 2018, 8, 180023.	3.6	43
14	Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Computational Biology, 2018, 14, e1005987.	3.2	31
15	Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Scientific Reports, 2017, 7, 1051.	3.3	46
16	A Versatile Toolbox for the Control of Protein Levels Using <i>N</i> ^ε -Acetyl- <scp>I</scp> -lysine Dependent Amber Suppression. ACS Synthetic Biology, 2017, 6, 1892-1902.	3.8	21
17	Structural Basis for EarP-Mediated Arginine Glycosylation of Translation Elongation Factor EF-P. MBio, 2017, 8, .	4.1	24
18	Identification and Initial Characterization of Prophages in Vibrio campbellii. PLoS ONE, 2016, 11, e0156010.	2.5	26

JüRGEN LASSAK

#	Article	IF	CITATIONS
19	Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first Arg ^{Rha} specific antibody. Chemical Science, 2016, 7, 6995-7001.	7.4	30
20	Stall no more at polyproline stretches with the translation elongation factors EFâ€P and IFâ€5A. Molecular Microbiology, 2016, 99, 219-235.	2.5	70
21	Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli. Journal of Molecular Biology, 2015, 427, 2548-2561.	4.2	35
22	Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 2015, 11, 266-270.	8.0	116
23	Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. FEMS Microbiology Letters, 2015, 362, 1-7.	1.8	15
24	A Conserved Proline Triplet in Val-tRNA Synthetase and the Origin of Elongation Factor P. Cell Reports, 2014, 9, 476-483.	6.4	41
25	Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Research, 2014, 42, 10711-10719.	14.5	88
26	The bacterial translation stress response. FEMS Microbiology Reviews, 2014, 38, 1172-1201.	8.6	165
27	Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches. Science, 2013, 339, 82-85.	12.6	393
28	Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15265-15270.	7.1	167
29	Domain Analysis of ArcS, the Hybrid Sensor Kinase of the Shewanella oneidensis MR-1 Arc Two-Component System, Reveals Functional Differentiation of Its Two Receiver Domains. Journal of Bacteriology, 2013, 195, 482-492.	2.2	19
30	A comprehensive toolbox for the rapid construction of lacZ fusion reporters. Journal of Microbiological Methods, 2012, 91, 537-543.	1.6	31
31	Analysis of the BarA/UvrY Two-Component System in Shewanella oneidensis MR-1. PLoS ONE, 2011, 6, e23440.	2.5	16
32	Phage-induced lysis enhances biofilm formation in <i>Shewanella oneidensis</i> MR-1. ISME Journal, 2011, 5, 613-626.	9.8	161
33	Cervimycin C resistance in Bacillus subtilis is due to a promoter up-mutation and increased mRNA stability of the constitutive ABC-transporter gene bmrA. FEMS Microbiology Letters, 2010, 313, 155-163.	1.8	22
34	ArcS, the Cognate Sensor Kinase in an Atypical Arc System of <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2010, 76, 3263-3274.	3.1	118
35	Two different stator systems drive a single polar flagellum in <i>Shewanella oneidensis</i> MRâ€1. Molecular Microbiology, 2009, 71, 836-850.	2.5	139
36	Switching the Post-Translational Modification of Elongation Factor P. SSRN Electronic Journal, 0, , .	0.4	0