List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9064855/publications.pdf Version: 2024-02-01

MASAAKI LIMEDA

#	Article	lF	CITATIONS
1	CFI 25 Subunit of Cleavage Factor I is Important for Maintaining the Diversity of 3Ê ¹ UTR Lengths in <i>Arabidopsis thaliana</i> (L.) Heynh Plant and Cell Physiology, 2022, 63, 369-383.	3.1	3
2	Preface to the special issue "Stem cell reformation in plants― Plant Biotechnology, 2022, 39, 1-4.	1.0	0
3	Whole-Mount for the Identification of in the Nuclei of. Methods in Molecular Biology, 2021, 2329, 71-80.	0.9	0
4	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	5.7	19
5	<u>C</u> YTO <u>K</u> ININ-RESPONSIVE <u>G</u> ROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. Plant Physiology, 2021, 186, 1734-1746.	4.8	22
6	ANAC044 is associated with P reutilization in P deficient Arabidopsis thaliana root cell wall in an ethylene dependent manner. Environmental and Experimental Botany, 2021, 185, 104386.	4.2	8
7	Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in <i>Arabidopsis</i> roots. Science Advances, 2021, 7, .	10.3	10
8	Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Annual Review of Plant Biology, 2021, 72, 273-296.	18.7	63
9	Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs and vegetative ACTIN2/8 are novel regulators of endoreplication. Journal of Plant Research, 2021, 134, 1291-1300.	2.4	6
10	Genome Maintenance Mechanisms at the Chromatin Level. International Journal of Molecular Sciences, 2021, 22, 10384.	4.1	3
11	The <i>Arabidopsis</i> NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31500-31509.	7.1	32
12	SUPPRESSOR OF GAMMA RESPONSE 1 acts as a regulator coordinating crosstalk between DNA damage response and immune response in Arabidopsis thaliana. Plant Molecular Biology, 2020, 103, 321-340.	3.9	10
13	CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. Journal of Cell Biology, 2020, 219, .	5.2	26
14	Editorial overview: How plants transform signaling cues into changes in gene expression. Current Opinion in Plant Biology, 2019, 51, A1-A3.	7.1	0
15	Cytokinin signaling coordinates development of diverse organs in Marchantia polymorpha. Plant Signaling and Behavior, 2019, 14, 1668232.	2.4	8
16	Cytokinin Signaling Is Essential for Organ Formation in <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2019, 60, 1842-1854.	3.1	41
17	Gap 2 phase: making the fundamental decision to divide or not. Current Opinion in Plant Biology, 2019, 51, 1-6.	7.1	11
18	ABA inhibits root cell elongation through repressing the cytokinin signaling. Plant Signaling and Behavior, 2019, 14, e1578632.	2.4	23

#	Article	IF	CITATIONS
19	A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. ELife, 2019, 8, .	6.0	86
20	Identifying the target genes of <scp>SUPPRESSOR OF GAMMA RESPONSE</scp> 1, a master transcription factor controlling <scp>DNA</scp> damage response in <i>Arabidopsis</i> . Plant Journal, 2018, 94, 439-453.	5.7	127
21	Actin Reorganization Triggers Rapid Cell Elongation in Roots. Plant Physiology, 2018, 178, 1130-1141.	4.8	43
22	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
23	Arabidopsis R1R2R3-Myb proteins are essential for inhibiting cell division in response to DNA damage. Nature Communications, 2017, 8, 635.	12.8	56
24	The plantâ€specific <scp>CDKB</scp> 1― <scp>CYCB</scp> 1 complex mediates homologous recombination repair in <i>Arabidopsis</i> . EMBO Journal, 2016, 35, 2068-2086.	7.8	119
25	Combination of Synthetic Chemistry and Live-Cell Imaging Identified a Rapid Cell Division Inhibitor in Tobacco and <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 2255-2268.	3.1	18
26	<scp>DNA</scp> damage inhibits lateral root formation by upâ€regulating cytokinin biosynthesis genes in <i>Arabidopsis thaliana</i> . Genes To Cells, 2016, 21, 1195-1208.	1.2	11
27	Cytrap Marker Systems for In Vivo Visualization of Cell Cycle Progression in Arabidopsis. Methods in Molecular Biology, 2016, 1370, 51-57.	0.9	4
28	Epigenetic Control of Cell Division and Cell Differentiation in the Root Apex. Frontiers in Plant Science, 2015, 6, 1178.	3.6	42
29	DNA doubleâ€strand breaks induce the expression of flavin ontaining monooxygenase and reduce root meristem size in <i><scp>A</scp>rabidopsis thaliana</i> . Genes To Cells, 2015, 20, 636-646.	1.2	26
30	Transcriptional repression by <scp>MYB</scp> 3R proteins regulates plant organ growth. EMBO Journal, 2015, 34, 1992-2007.	7.8	128
31	Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism. Cell, 2015, 161, 907-918.	28.9	111
32	Cyclinâ€dependent kinaseâ€activating kinases <scp>CDKD</scp> ;1 and <scp>CDKD</scp> ;3 are essential for preserving mitotic activity in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 1004-1017.	5.7	58
33	The role of SOG1, a plant-specific transcriptional regulator, in the DNA damage response. Plant Signaling and Behavior, 2014, 9, e28889.	2.4	70
34	Differential regulation of B2-type CDK accumulation in Arabidopsis roots. Plant Cell Reports, 2014, 33, 1033-1040.	5.6	10
35	Hormonal control of cell division and elongation along differentiation trajectories in roots. Journal of Experimental Botany, 2014, 65, 2633-2643.	4.8	194
36	The <i>Arabidopsis</i> SIAMESE-RELATED Cyclin-Dependent Kinase Inhibitors SMR5 and SMR7 Regulate the DNA Damage Checkpoint in Response to Reactive Oxygen Species. Plant Cell, 2014, 26, 296-309.	6.6	164

#	Article	IF	CITATIONS
37	A dualâ€color marker system for <i>in vivo</i> visualization of cell cycle progression in <scp>A</scp> rabidopsis. Plant Journal, 2014, 80, 541-552.	5.7	61
38	Cell Cycle. , 2014, , 1-19.		1
39	Cytokinins Control Endocycle Onset by Promoting the Expression of an APC/C Activator in Arabidopsis Roots. Current Biology, 2013, 23, 1812-1817.	3.9	92
40	Kip-Related Protein 3 Is Required for Control of Endoreduplication in the Shoot Apical Meristem and Leaves of Arabidopsis. Molecules and Cells, 2013, 35, 47-53.	2.6	29
41	ATMâ€mediated phosphorylation of SOG1 is essential for the DNA damage response in <i>Arabidopsis</i> . EMBO Reports, 2013, 14, 817-822.	4.5	154
42	Synthesis of Very-Long-Chain Fatty Acids in the Epidermis Controls Plant Organ Growth by Restricting Cell Proliferation. PLoS Biology, 2013, 11, e1001531.	5.6	107
43	Veryâ€longâ€chain fatty acids have an essential role in plastid division by controlling <scp>Z</scp> â€ring formation in <i><scp>A</scp>rabidopsis thaliana</i> . Genes To Cells, 2012, 17, 709-719.	1.2	29
44	Cell-Cycle Control and Plant Development. International Review of Cell and Molecular Biology, 2011, 291, 227-261.	3.2	61
45	Condensin II Alleviates DNA Damage and Is Essential for Tolerance of Boron Overload Stress in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3533-3546.	6.6	128
46	Programmed induction of endoreduplication by DNA double-strand breaks in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10004-10009.	7.1	252
47	Cryptogein-Induced Cell Cycle Arrest at G2 Phase is Associated with Inhibition of Cyclin-Dependent Kinases, Suppression of Expression of Cell Cycle-Related Genes and Protein Degradation in Synchronized Tobacco BY-2 Cells. Plant and Cell Physiology, 2011, 52, 922-932.	3.1	11
48	Two Arabidopsis cyclin A3s possess G1 cyclin-like features. Plant Cell Reports, 2010, 29, 307-315.	5.6	40
49	Auxin modulates the transition from the mitotic cycle to the endocycle in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 63-71.	2.5	131
50	SUMO E3 Ligase HIGH PLOIDY2 Regulates Endocycle Onset and Meristem Maintenance in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2284-2297.	6.6	186
51	The Arabidopsis cyclinâ€dependent kinaseâ€activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. Plant Journal, 2009, 59, 475-487.	5.7	48
52	Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Developmental Biology, 2009, 329, 306-314.	2.0	20
53	Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during <i>Arabidopsis</i> Gametogenesis A. Plant Cell, 2008, 20, 1538-1554.	6.6	142
54	The Arabidopsis D-Type Cyclin CYCD4 Controls Cell Division in the Stomatal Lineage of the Hypocotyl Epidermis. Plant Cell, 2007, 19, 1265-1277.	6.6	73

#	Article	IF	CITATIONS
55	Potential roles for autophosphorylation, kinase activity, and abundance of a CDK-activating kinase (Ee;CDKF;1) during growth in leafy spurge. Plant Molecular Biology, 2007, 63, 365-379.	3.9	11
56	Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Journal, 2006, 47, 701-710x.	5.7	54
57	A distinct type of cyclin D, CYCD4;2, involved in the activation of cell division in Arabidopsis. Plant Cell Reports, 2006, 25, 540-545.	5.6	19
58	Expression of B2-Type Cyclin-Dependent Kinase is Controlled by Protein Degradation in Arabidopsis thaliana. Plant and Cell Physiology, 2006, 47, 1683-1686.	3.1	27
59	Control of Cell Division and Transcription by Cyclin-dependent Kinase-activating Kinases in Plants. Plant and Cell Physiology, 2005, 46, 1437-1442.	3.1	95
60	The Plant-Specific Kinase CDKF;1 Is Involved in Activating Phosphorylation of Cyclin-Dependent Kinase-Activating Kinases in Arabidopsis. Plant Cell, 2004, 16, 2954-2966.	6.6	70
61	Differential phosphorylation activities of CDK-activating kinases inArabidopsis thaliana. FEBS Letters, 2003, 534, 69-74.	2.8	47
62	Arabidopsis D-Type Cyclin CYCD4;1 Is a Novel Cyclin Partner of B2-Type Cyclin-Dependent Kinase. Plant Physiology, 2003, 132, 1315-1321.	4.8	72
63	The Rice Cyclin-Dependent Kinase –Activating Kinase R2 Regulates S-Phase Progression. Plant Cell, 2002, 14, 197-210.	6.6	42
64	Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants. Plant Journal, 2000, 24, 11-20.	5.7	62
65	CDK-related protein kinases in plants. Plant Molecular Biology, 2000, 43, 607-620.	3.9	221
66	The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta, 2000, 211, 376-383.	3.2	60
67	A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. Plant Journal, 1998, 16, 613-619.	5.7	59

68 CDK Phosphorylation. , 0, , 114-137.