
Brian G Gabrielli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9064057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysregulated G2 phase checkpoint recovery pathway reduces DNA repair efficiency and increases chromosomal instability in a wide range of tumours. Oncogenesis, 2021, 10, 41.	4.9	3
2	Targeting Replication Stress Using CHK1 Inhibitor Promotes Innate and NKT Cell Immune Responses and Tumour Regression. Cancers, 2021, 13, 3733.	3.7	12
3	Multiple interaction nodes define the postreplication repair response to UVâ€induced DNA damage that is defective in melanomas and correlated with UV signature mutation load. Molecular Oncology, 2020, 14, 22-41.	4.6	5
4	Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. Journal of Investigative Dermatology, 2020, 140, 1299-1302.e4.	0.7	3
5	Smart drug combinations for cervical cancer: dual targeting of Bcl-2 family of proteins and aurora kinases. American Journal of Cancer Research, 2020, 10, 3406-3414.	1.4	1
6	Everything in Moderation: Lessons Learned by Exploiting Moderate Replication Stress in Cancer. Cancers, 2019, 11, 1320.	3.7	16
7	TARGETING P53 AND NUCLEOLAR STRESS IN DIAMOND-BLACKFAN ANAEMIA. Experimental Hematology, 2019, 76, S69-S70.	0.4	0
8	Combined use of subclinical hydroxyurea and CHK1 inhibitor effectively controls melanoma and lung cancer progression, with reduced normal tissue toxicity compared to gemcitabine. Molecular Oncology, 2019, 13, 1503-1518.	4.6	17
9	Melanoma mutations modify melanocyte dynamics in coculture with keratinocytes or fibroblasts. Journal of Cell Science, 2019, 132, .	2.0	5
10	Pathway dysregulation analysis of the nucleotide excision repair mechanisms reveals it is not a common feature of melanomas. Pigment Cell and Melanoma Research, 2019, 32, 336-338.	3.3	1
11	Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1ASecretion. Journal of Investigative Dermatology, 2018, 138, 893-902.	0.7	9
12	Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors <i>In Vivo</i> . Clinical Cancer Research, 2018, 24, 2901-2912.	7.0	15
13	Discovery of thalicthuberine as a novel antimitotic agent from nature that disrupts microtubule dynamics and induces apoptosis in prostate cancer cells. Cell Cycle, 2018, 17, 652-668.	2.6	13
14	Acetylsalicylic Acid Governs the Effect of Sorafenib in <i>RAS</i> -Mutant Cancers. Clinical Cancer Research, 2018, 24, 1090-1102.	7.0	16
15	Aurora kinases are a novel therapeutic target for HPV-positive head and neck cancers. Oral Oncology, 2018, 86, 105-112.	1.5	24
16	<scp>CEP</scp> 55 is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Molecular Medicine, 2018, 10, .	6.9	59
17	Mechanism of action of the third generation benzopyrans and evaluation of their broad anti-cancer activity in vitro and in vivo. Scientific Reports, 2018, 8, 5144.	3.3	12
18	Distinct histone modifications denote early stress-induced drug tolerance in cancer. Oncotarget, 2018, 9, 8206-8222.	1.8	54

#	Article	IF	CITATIONS
19	Cell cycleâ€ŧailored targeting of metastatic melanoma: Challenges and opportunities. Experimental Dermatology, 2017, 26, 649-655.	2.9	20
20	Inhibition of Aurora A and Aurora B Is Required for the Sensitivity of HPV-Driven Cervical Cancers to Aurora Kinase Inhibitors. Molecular Cancer Therapeutics, 2017, 16, 1934-1941.	4.1	12
21	Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma. SLAS Discovery, 2017, 22, 298-308.	2.7	9
22	6α-Acetoxyanopterine: A Novel Structure Class of Mitotic Inhibitor Disrupting Microtubule Dynamics in Prostate Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 3-15.	4.1	20
23	Topoisomerase II Inhibitors and Poisons, and the Influence of Cell Cycle Checkpoints. Current Medicinal Chemistry, 2017, 24, 1504-1519.	2.4	25
24	A mutation in the <i>Cdon</i> gene potentiates congenital nevus development mediated by NRAS ^{Q61K} . Pigment Cell and Melanoma Research, 2016, 29, 459-464.	3.3	8
25	Multiparameter analysis of naevi and primary melanomas identifies a subset of naevi with elevated markers of transformation. Pigment Cell and Melanoma Research, 2016, 29, 444-452.	3.3	3
26	A novel <scp>ATM</scp> â€dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma. Pigment Cell and Melanoma Research, 2016, 29, 329-339.	3.3	8
27	Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. Journal of Investigative Dermatology, 2016, 136, 1479-1489.	0.7	56
28	In vivo overexpression of Emi1 promotes chromosome instability and tumorigenesis. Oncogene, 2016, 35, 5446-5455.	5.9	51
29	Cdc25 Family Phosphatases in Cancer. , 2016, , 283-306.		1
30	Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling. Stem Cells, 2016, 34, 902-912.	3.2	39
31	A distinct expression profile separates Turkish and Australian melanocytic naevi. Histopathology, 2016, 69, 151-154.	2.9	0
32	Cell line and patient-derived xenograft models reveal elevated CDCP1 as a target in high-grade serous ovarian cancer. British Journal of Cancer, 2016, 114, 417-426.	6.4	35
33	Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer. Oncotarget, 2016, 7, 61000-61020.	1.8	10
34	Cell Cycle Checkpoint and DNA Damage Response Defects as Anticancer Targets: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 29-49.		6
35	Aurora A Is Critical for Survival in HPV-Transformed Cervical Cancer. Molecular Cancer Therapeutics, 2015, 14, 2753-2761.	4.1	30
36	JIP4 is a PLK1 binding protein that regulates p38MAPK activity in G2 phase. Cellular Signalling, 2015, 27, 2296-2303.	3.6	8

#	Article	IF	CITATIONS
37	A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene, 2015, 34, 4448-4459.	5.9	125
38	Abstract 945: Synthetic lethal screen identifies Aurora A as a selective target in HPV driven cervical cancer. , 2015, , .		0
39	Cyclin A/Cdk2 regulates Cdh1 and claspin during late S/G2 phase of the cell cycle. Cell Cycle, 2014, 13, 3302-3311.	2.6	54
40	Phenotypic Characterization of Nevus and Tumor Patterns in MITF E318K Mutation Carrier Melanoma Patients. Journal of Investigative Dermatology, 2014, 134, 141-149.	0.7	68
41	Defective Decatenation Checkpoint Function Is a Common Feature of Melanoma. Journal of Investigative Dermatology, 2014, 134, 150-158.	0.7	23
42	Decatenation checkpointâ€defective melanomas are dependent on <scp>PI</scp> 3K for survival. Pigment Cell and Melanoma Research, 2014, 27, 813-821.	3.3	10
43	<scp>DCT</scp> protects human melanocytic cells from <scp>UVR</scp> and <scp>ROS</scp> damage and increases cell viability. Experimental Dermatology, 2014, 23, 916-921.	2.9	17
44	Rapid Mapping of Interactions between Human SNX-BAR Proteins Measured In Vitro by AlphaScreen and Single-molecule Spectroscopy. Molecular and Cellular Proteomics, 2014, 13, 2233-2245.	3.8	36
45	Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World Journal of Gastroenterology, 2014, 20, 17851-17862.	3.3	57
46	Truncated MEK1 is required for transient activation of MAPK signalling in G2 phase cells. Cellular Signalling, 2013, 25, 1423-1428.	3.6	1
47	MicroRNA-182-5p targets a network of genes involved in DNA repair. Rna, 2013, 19, 230-242.	3.5	108
48	<scp>DNA</scp> repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell and Melanoma Research, 2013, 26, 805-816.	3.3	22
49	A potent Chk1 inhibitor is selectively cytotoxic in melanomas with high levels of replicative stress. Oncogene, 2013, 32, 788-796.	5.9	79
50	Similar, not the same. Cell Cycle, 2013, 12, 715-715.	2.6	2
51	CDC25B Overexpression Stabilises Centrin 2 and Promotes the Formation of Excess Centriolar Foci. PLoS ONE, 2013, 8, e67822.	2.5	24
52	Oxidative Stress and Cell Senescence Combine to Cause Maximal Renal Tubular Epithelial Cell Dysfunction and Loss in an in vitro Model of Kidney Disease. Nephron Experimental Nephrology, 2013, 122, 123-130.	2.2	45
53	Abstract 3425: Chk1 inhibitor targets replicative stress in melanomas , 2013, , .		0
54	A UVR-Induced G2-Phase Checkpoint Response to ssDNA Gaps Produced by Replication Fork Bypass of Unrepaired Lesions Is Defective in Melanoma. Journal of Investigative Dermatology, 2012, 132, 1681-1688.	0.7	16

#	Article	IF	CITATIONS
55	Keeping replicative stress in Chk. Cell Cycle, 2012, 11, 2039-2040.	2.6	0
56	Histone deacetylase inhibitors in the generation of the antiâ€ŧumour immune response. Immunology and Cell Biology, 2012, 90, 33-38.	2.3	24
57	Generation of a Genome Scale Lentiviral Vector Library for EF1α Promoter-Driven Expression of Human ORFs and Identification of Human Genes Affecting Viral Titer. PLoS ONE, 2012, 7, e51733.	2.5	23
58	Defective Cell Cycle Checkpoints as Targets for Anti-Cancer Therapies. Frontiers in Pharmacology, 2012, 3, 9.	3.5	58
59	Multiple melanoma susceptibility factors function in an ultraviolet radiation response pathway in skin. British Journal of Dermatology, 2012, 166, 362-371.	1.5	10
60	Histone Deacetylase Inhibitors Disrupt the Mitotic Spindle Assembly Checkpoint By Targeting Histone and Nonhistone Proteins. Advances in Cancer Research, 2012, 116, 1-37.	5.0	18
61	A High-Throughput Platform for Lentiviral Overexpression Screening of the Human ORFeome. PLoS ONE, 2011, 6, e20057.	2.5	43
62	CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biology of the Cell, 2011, 103, 55-68.	2.0	17
63	Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain, 2011, 134, 1331-1343.	7.6	151
64	Phosphorylation of Cdc25B3 Ser169 regulates 14-3-3 binding to Ser151 and Cdc25B activity. Cell Cycle, 2011, 10, 1960-1967.	2.6	8
65	High-content imaging of neutral lipid droplets with 1,6-diphenylhexatriene. BioTechniques, 2011, 51, 35-42.	1.8	24
66	Finally, how histone deacetylase inhibitors disrupt mitosis!. Cell Cycle, 2011, 10, 2658-2661.	2.6	8
67	Adaptation and validation of DNA synthesis detection by fluorescent dye derivatization for high-throughput screening. BioTechniques, 2010, 48, 379-386.	1.8	10
68	Inhibition of Histone Deacetylase 3 Produces Mitotic Defects Independent of Alterations in Histone H3 Lysine 9 Acetylation and Methylation. Molecular Pharmacology, 2010, 78, 384-393.	2.3	17
69	The Histone Deacetylase Inhibitor MGCD0103 Has Both Deacetylase and Microtubule Inhibitory Activity. Molecular Pharmacology, 2010, 78, 436-443.	2.3	9
70	Mitotic Phosphorylation of Cdc25B Ser321 Disrupts 14-3-3 Binding to the High Affinity Ser323 Site. Journal of Biological Chemistry, 2010, 285, 34364-34370.	3.4	23
71	MAPK Pathway Activation Delays G2/M Progression by Destabilizing Cdc25B. Journal of Biological Chemistry, 2009, 284, 33781-33788.	3.4	31
72	Cyclin A/cdk2 Regulates Adenomatous Polyposis Coli-dependent Mitotic Spindle Anchoring. Journal of Biological Chemistry, 2009, 284, 29015-29023.	3.4	18

#	Article	IF	CITATIONS
73	CtBPs Promote Cell Survival through the Maintenance of Mitotic Fidelity. Molecular and Cellular Biology, 2009, 29, 4539-4551.	2.3	46
74	Histone deacetylase inhibitors induce mitotic slippage. Oncogene, 2008, 27, 1345-1354.	5.9	78
75	Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene, 2008, 27, 4261-4268.	5.9	132
76	The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biology, 2008, 9, R127.	9.6	278
77	Do Histone Deacetylase Inhibitors Target Cell Cycle Checkpoints that Monitor Heterochromatin Structure?. , 2008, , 291-309.		0
78	Caffeine Promotes Apoptosis in Mitotic Spindle Checkpoint-arrested Cells*. Journal of Biological Chemistry, 2007, 282, 6954-6964.	3.4	33
79	Inhibition of S/G2 Phase CDK4 Reduces Mitotic Fidelity*. Journal of Biological Chemistry, 2006, 281, 9987-9995.	3.4	29
80	Cell Cycle Targets of Histone Deacetylase Inhibitors. , 2006, , 299-313.		1
81	Spontaneous and UV Radiation–Induced Multiple Metastatic Melanomas in Cdk4R24C/R24C/TPras Mice. Cancer Research, 2006, 66, 2946-2952.	0.9	52
82	RNA Interference against Human Papillomavirus Oncogenes in Cervical Cancer Cells Results in Increased Sensitivity to Cisplatin. Molecular Pharmacology, 2005, 68, 1311-1319.	2.3	104
83	Cdk1/Erk2- and Plk1-Dependent Phosphorylation of a Centrosome Protein, Cep55, Is Required for Its Recruitment to Midbody and Cytokinesis. Developmental Cell, 2005, 9, 477-488.	7.0	273
84	Analysis of Checkpoint Responses to Histone Deacetylase Inhibitors. , 2004, 281, 245-260.		7
85	Histone-Deacetylase Inhibitors for the Treatment of Cancer. Cell Cycle, 2004, 3, 777-786.	2.6	127
86	Analyzing Checkpoint Controls in Human Skin. , 2004, 280, 175-184.		1
87	The EBNA- 3 gene family proteins disrupt the G2/M checkpoint. Oncogene, 2004, 23, 1342-1353.	5.9	56
88	Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene, 2004, 23, 6693-6701.	5.9	129
89	Defining the Chemotherapeutic Targets of Histone Deacetylase Inhibitors. Annals of the New York Academy of Sciences, 2004, 1030, 627-635.	3.8	8
90	14-3-3 Acts as an Intramolecular Bridge to Regulate cdc25B Localization and Activity. Journal of Biological Chemistry, 2003, 278, 28580-28587.	3.4	69

#	Article	IF	CITATIONS
91	Mechanism of Mitosis-specific Activation of MEK1. Journal of Biological Chemistry, 2003, 278, 16747-16754.	3.4	49
92	APC mutation and tumour budding in colorectal cancer. Journal of Clinical Pathology, 2003, 56, 69-73.	2.0	137
93	Tumor cellâ€specific cytotoxicity by targeting cell cycle checkpoints. FASEB Journal, 2003, 17, 1-21.	0.5	132
94	Identifying Molecular Targets Mediating the Anticancer Activity of Histone Deacetylase Inhibitors: A Work in Progress. Current Cancer Drug Targets, 2002, 2, 337-353.	1.6	25
95	Loss of p16 expression is associated with histological features of melanoma invasion. Melanoma Research, 2002, 12, 539-547.	1.2	59
96	A HISTONE DEACETYLASE INHIBITOR, AZELAIC BISHYDROXAMIC ACID, SHOWS CYTOTOXICITY ON EPSTEIN-BARR VIRUS-TRANSFORMED B-CELL LINES. Transplantation, 2002, 73, 271-279.	1.0	12
97	Alpha-melanocyte stimulating hormone potentiates p16/CDKN2A expression in human skin after ultraviolet irradiation. Cancer Research, 2002, 62, 875-80.	0.9	22
98	Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene, 2001, 20, 921-932.	5.9	84
99	Cdc25B activity is regulated by 14-3-3. Oncogene, 2001, 20, 4393-4401.	5.9	96
100	G2 phase cell cycle arrest in human skin following UV irradiation. Oncogene, 2001, 20, 6103-6110.	5.9	68
101	Histone Hyperacetylation Induced by Histone Deacetylase Inhibitors Is Not Sufficient to Cause Growth Inhibition in Human Dermal Fibroblasts. Journal of Biological Chemistry, 2001, 276, 22491-22499.	3.4	58
102	Regulation of CDC25B phosphatases subcellular localization. Oncogene, 2000, 19, 2179-2185.	5.9	98
103	Histone Deacetylase Inhibitors Trigger a G2 Checkpoint in Normal Cells That Is Defective in Tumor Cells. Molecular Biology of the Cell, 2000, 11, 2069-2083.	2.1	246
104	Centrosomal and Cytoplasmic Cdc2/Cyclin B1 Activation Precedes Nuclear Mitotic Events. Experimental Cell Research, 2000, 257, 11-21.	2.6	126
105	A Cyclin D-Cdk4 Activity Required for G2 Phase Cell Cycle Progression Is Inhibited in Ultraviolet Radiation-induced G2 Phase Delay. Journal of Biological Chemistry, 1999, 274, 13961-13969.	3.4	62
106	Functional reassessment of P16 variants using a transfection-based assay. International Journal of Cancer, 1999, 82, 305-312.	5.1	47
107	Multiple Splicing Variants of cdc25B Regulate G2/M Progression. Biochemical and Biophysical Research Communications, 1999, 260, 510-515.	2.1	61

Functional reassessment of P16 variants using a transfection-based assay. , 1999, 82, 305.

1

#	Article	IF	CITATIONS
109	ATM associates with and phosphorylates p53: mapping the region of interaction. Nature Genetics, 1998, 20, 398-400.	21.4	450
110	Involvement of p16CDKN2A in cell cycle delays after low dose UV irradiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 422, 43-53.	1.0	28
111	Hyperphosphorylation of the N-terminal Domain of Cdc25 Regulates Activity toward Cyclin B1/Cdc2 But Not Cyclin A/Cdk2. Journal of Biological Chemistry, 1997, 272, 28607-28614.	3.4	89
112	Restoration of CDKN2A into Melanoma Cells Induces Morphologic Changes and Reduction in Growth Rate but Not Anchorage-Independent Growth Reversal. Journal of Investigative Dermatology, 1997, 109, 61-68.	0.7	16
113	Ultraviolet light-induced G2 phase cell cycle checkpoint blocks cdc25-dependent progression into mitosis. Oncogene, 1997, 15, 749-758.	5.9	61
114	Increased expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product P16INK4A in ovarian cancer is associated with progression and unfavourable prognosis. International Journal of Cancer, 1997, 74, 57-63.	5.1	78
115	Reduced expression of retinoblastoma gene product (pRB) and high expression of p53 are associated with poor prognosis in ovarian cancer. , 1997, 74, 407-415.		62
116	Production of a Soluble Cyclin B/cdc2 Substrate for cdc25 Phosphatase. Analytical Biochemistry, 1997, 254, 231-235.	2.4	5
117	Requirement for Cdk2 in cytostatic factor-mediated metaphase II arrest. Science, 1993, 259, 1766-1769.	12.6	93
118	Activation of p34cdc2 kinase by cyclin A Journal of Cell Biology, 1991, 113, 507-514.	5.2	122
119	Phosphorylation of ribosomal protein S6 and a peptide analogue of S6 by a protease-activated kinase isolated from rat liver. FERS Letters, 1984, 175, 219-226	2.8	44