
Carmen Valenzuela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9062115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IQM-PC332, a Novel DREAM Ligand with Antinociceptive Effect on Peripheral Nerve Injury-Induced Pain. International Journal of Molecular Sciences, 2022, 23, 2142.	4.1	4
2	KV1.5–KVβ1.3 Recycling Is PKC-Dependent. International Journal of Molecular Sciences, 2021, 22, 1336.	4.1	2
3	K V 1.3 channels are novel determinants of macrophageâ€dependent endothelial dysfunction in angiotensin Ilâ€induced hypertension in mice. British Journal of Pharmacology, 2021, 178, 1836-1854.	5.4	3
4	ldentification of a critical binding site for local anaesthetics in the side pockets of K v 1 channels. British Journal of Pharmacology, 2021, 178, 3034-3048.	5.4	3
5	Graphene Particles Interfere with Proâ€Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence. Advanced Biology, 2021, 5, e2100882.	2.5	8
6	Pharmacological Approaches for the Modulation of the Potassium Channel KV4.x and KChIPs. International Journal of Molecular Sciences, 2021, 22, 1419.	4.1	7
7	Graphene Particles Interfere with Proâ€Inflammatory Polarization of Human Macrophages: Functional and Electrophysiological Evidence (Adv. Biology 11/2021). Advanced Biology, 2021, 5, .	2.5	1
8	The unconventional biogenesis of Kv7.1-KCNE1 complexes. Science Advances, 2020, 6, eaay4472.	10.3	9
9	Differential effect of Androctonus australis hector venom components on macrophage KV channels: electrophysiological characterization. European Biophysics Journal, 2019, 48, 1-13.	2.2	8
10	Targeting the neuronal calcium sensor DREAM with small-molecules for Huntington's disease treatment. Scientific Reports, 2019, 9, 7260.	3.3	15
11	Activation of K _v 7 channels as a novel mechanism for NO/cGMPâ€induced pulmonary vasodilation. British Journal of Pharmacology, 2019, 176, 2131-2145.	5.4	23
12	Identification of IQM-266, a Novel DREAM Ligand That Modulates KV4 Currents. Frontiers in Molecular Neuroscience, 2019, 12, 11.	2.9	6
13	Re-Education of Tumor Associated Macrophages by Trabectedin. Biophysical Journal, 2019, 116, 539a-540a.	O.5	2
14	D242N, a KV7.1 LQTS Mutation Uncovers a KEY Residue for IKS Voltage Dependence. Biophysical Journal, 2018, 114, 307a.	0.5	0
15	Activation of Kv7 contributes to the relaxant effects of the NO/cGMP pathway in the pulmonary circulation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-3-42.	0.0	0
16	Trabectedin Re-Educates Resting Peritoneal Macrophages into M1 Subtype. Biophysical Journal, 2017, 112, 405a.	0.5	1
17	D242N, a KV7.1 LQTS mutation uncovers a key residue for IKs voltage dependence. Journal of Molecular and Cellular Cardiology, 2017, 110, 61-69.	1.9	11
18	IKs Computational Modeling to Enforce the Investigation of D242N, a KV7.1 LQTS Mutation. , 2017, , .		0

IKs Computational Modeling to Enforce the Investigation of D242N, a KV7.1 LQTS Mutation. , 2017, , . 18

#	Article	IF	CITATIONS
19	Fludarabine Inhibits KV1.3 Currents in Human B Lymphocytes. Frontiers in Pharmacology, 2017, 8, 177.	3.5	5
20	In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets. Frontiers in Physiology, 2016, 7, 578.	2.8	10
21	Mâ€channels and nâ€3 polyunsaturated fatty acids: role in pain and epilepsy. Acta Physiologica, 2016, 218, 7-9.	3.8	3
22	A New KCNQ1 Mutation at the S5 Segment that Impairs its Association with KCNE1 is Responsible for Short QT Syndrome. Biophysical Journal, 2016, 110, 448a-449a.	0.5	0
23	Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. Journal of Clinical Investigation, 2016, 126, 627-638.	8.2	56
24	Pharmacological Consequences of PKC Inhibition on Kv1.5+Kvbeta1.3 Channels. Biophysical Journal, 2015, 108, 278a.	0.5	0
25	Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death. PLoS ONE, 2015, 10, e0140782.	2.5	14
26	Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains. Cardiovascular Research, 2015, 105, 223-232.	3.8	24
27	A new <i>KCNQ1</i> mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovascular Research, 2015, 107, 613-623.	3.8	67
28	Functional Assembly of Kv7.1/Kv7.5 Channels With Emerging Properties on Vascular Muscle Physiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1522-1530.	2.4	26
29	<scp>PKC</scp> inhibition results in a <scp>K_v</scp> 1.5 + <scp>K_v^{î2}</scp> 1.3 pharmacology closer to <scp>K_v</scp> 1.5 channels. British Journal of Pharmacology, 2014, 171, 4914-4926.	5.4	3
30	Effects of Cl888 on Kv4.3, Kv4.3/Kchip2C and Kv4.3/KChiP3 Channels. Biophysical Journal, 2014, 106, 544a.	0.5	0
31	Effects of E-LXA4 on Kv and Kir Recorded from Bone Marrow Mouse Macrophages. Biophysical Journal, 2014, 106, 544a.	0.5	Ο
32	Modulation of Kv and Kir Currents by 15-Epi-Lipoxin-A4 in activated Macrophages. Implications for the Regulation of the Innate Immune Response. Biophysical Journal, 2013, 104, 464a.	0.5	0
33	Modulation of Voltage-Dependent and Inward Rectifier Potassium Channels by 15-Epi-Lipoxin-A4 in Activated Murine Macrophages: Implications in Innate Immunity. Journal of Immunology, 2013, 191, 6136-6146.	0.8	35
34	Effects of nâ^'3 Polyunsaturated Fatty Acids on Cardiac Ion Channels. Frontiers in Physiology, 2012, 3, 245.	2.8	39
35	Protein Kinase C (PKC) Activity Regulates Functional Effects of Kvβ1.3 Subunit on KV1.5 Channels. Journal of Biological Chemistry, 2012, 287, 21416-21428.	3.4	19
36	Female gender: risk factor for congenital long QT-related arrhythmias. Cardiovascular Research, 2012, 95, 263-264.	3.8	1

#	Article	IF	CITATIONS
37	Irvalec Inserts Into the Plasma Membrane Causing Rapid Loss of Integrity and Necrotic Cell Death in Tumor Cells. Biophysical Journal, 2012, 102, 65a-66a.	0.5	Ο
38	Polyunsaturated Fatty Acids Modify the Gating of Kv Channels. Frontiers in Pharmacology, 2012, 3, 163.	3.5	14
39	Stereoselective Interactions between Local Anesthetics and Ion Channels. Chirality, 2012, 24, 944-950.	2.6	11
40	Celecoxib Blocks Cardiac Kv1.5, Kv4.3 and Kv7.1 (KCNQ1) Channels. Effects on Cardiac Action Potentials. Biophysical Journal, 2011, 100, 429a.	0.5	0
41	Ceramide inhibits K _v currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries. American Journal of Physiology - Cell Physiology, 2011, 301, C186-C194.	4.6	25
42	Irvalec Inserts into the Plasma Membrane Causing Rapid Loss of Integrity and Necrotic Cell Death in Tumor Cells. PLoS ONE, 2011, 6, e19042.	2.5	26
43	Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochemical Pharmacology, 2010, 80, 858-866.	4.4	71
44	Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. Journal of General Physiology, 2010, 135, 135-147.	1.9	74
45	Kv1.5-Kvβ Interactions: Molecular Determinants and Pharmacological Consequences. Mini-Reviews in Medicinal Chemistry, 2010, 10, 635-642.	2.4	12
46	Immunomodulation of Voltage-Dependent K+ Channels in Macrophages: Molecular and Biophysical Consequences. Biophysical Journal, 2010, 98, 118a.	0.5	0
47	439 Rapid effects of Irvalec on tumor cell integrity associated with changes in the ionic membrane conductance. European Journal of Cancer, Supplement, 2010, 8, 139.	2.2	Ο
48	Celecoxib blocks cardiac Kv1.5, Kv4.3 and Kv7.1 (KCNQ1) channels. Journal of Molecular and Cellular Cardiology, 2010, 49, 984-992.	1.9	24
49	Differential Regulation Of Navß Subunits During Myogenesis. Biophysical Journal, 2009, 96, 250a-251a.	0.5	1
50	Cell cycle-dependent expression of Kv1.5 is involved in myoblast proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 728-736.	4.1	38
51	Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, α-linolenic acid. Journal of Molecular and Cellular Cardiology, 2008, 44, 323-335.	1.9	38
52	Differential regulation of Navl² subunits during myogenesis. Biochemical and Biophysical Research Communications, 2008, 368, 761-766.	2.1	13
53	Ultrafast sodium channel block by dietary fish oil prevents dofetilide-induced ventricular arrhythmias in rabbit hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1414-H1421.	3.2	23
54	Voltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repairâ~†. Cardiovascular Research, 2007, 76, 430-441.	3.8	11

#	Article	IF	CITATIONS
55	Kvβ1.3 Reduces the Degree of Stereoselective Bupivacaine Block of Kv1.5 Channels. Anesthesiology, 2007, 107, 641-651.	2.5	19
56	The induction of NOS2 expression by the hybrid cecropin A–melittin antibiotic peptide CA(1–8)M(1–18) in the monocytic line RAW 264.7 is triggered by a temporary and reversible plasma membrane permeation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 110-119.	4.1	6
57	ï‰-3 and ï‰-6 polyunsaturated fatty acids block HERG channels. American Journal of Physiology - Cell Physiology, 2005, 289, C1251-C1260.	4.6	48
58	Stereoselective Interactions Between Local Anesthetics and Cardiac K+ Channels. Drug Design Reviews Online, 2005, 2, 389-396.	0.7	1
59	Interaction of angiotensin II with the angiotensin type 2 receptor inhibits the cardiac transient outward potassium current. Cardiovascular Research, 2004, 62, 86-95.	3.8	40
60	Pharmacology of cardiac potassium channels. Cardiovascular Research, 2004, 62, 9-33.	3.8	398
61	Effects of Irbesartan on Cloned Potassium Channels Involved in Human Cardiac Repolarization. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 862-873.	2.5	66
62	Spironolactone and Its Main Metabolite, Canrenoic Acid, Block Human Ether-a-Go-Go–Related Gene Channels. Circulation, 2003, 107, 889-895.	1.6	65
63	Pharmacological electrical remodelling in human atria induced by chronic β-blockade. Cardiovascular Research, 2003, 58, 498-500.	3.8	3
64	Effects of propafenone and its main metabolite, 5-hydroxypropafenone, on HERG channels. Cardiovascular Research, 2003, 57, 660-669.	3.8	25
65	Stereoselective Drug-Channel Interactions. Handbook of Experimental Pharmacology, 2003, , 199-228.	1.8	2
66	Assembly with the Kvβ1.3 Subunit Modulates Drug Block of hKv1.5 Channels. Molecular Pharmacology, 2002, 62, 1456-1463.	2.3	38
67	Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5). Cardiovascular Research, 2002, 56, 104-117.	3.8	38
68	Effects of levobupivacaine, ropivacaine and bupivacaine on HERG channels: stereoselective bupivacaine block. British Journal of Pharmacology, 2002, 137, 1269-1279.	5.4	46
69	Direct Effects of Candesartan and Eprosartan on Human Cloned Potassium Channels Involved in Cardiac Repolarization. Molecular Pharmacology, 2001, 59, 825-836.	2.3	34
70	Stereoselective effects of the enantiomers of a new local anaesthetic, IQB-9302, on a human cardiac potassium channel (Kv1.5). British Journal of Pharmacology, 2001, 132, 385-392.	5.4	10
71	Bupivacaine effects on hKv1.5 channels are dependent on extracellular pH. British Journal of Pharmacology, 2001, 134, 359-369.	5.4	7
72	Effects of a quaternary bupivacaine derivative on delayed rectifier K+ currents. British Journal of Pharmacology, 2000, 130, 391-401.	5.4	18

#	Article	IF	CITATIONS
73	Losartan and Its Metabolite E3174 Modify Cardiac Delayed Rectifier K + Currents. Circulation, 2000, 101, 1199-1205.	1.6	71
74	Functional expression of an inactivating potassium channel (Kv4.3) in a mammalian cell line. Cardiovascular Research, 1999, 41, 212-219.	3.8	35
75	Benzocaine enhances and inhibits the K+ current through a human cardiac cloned channel (Kv1.5). Cardiovascular Research, 1999, 42, 510-520.	3.8	16
76	Effects of rupatadine, a new dual antagonist of histamine and platelet-activating factor receptors, on human cardiac Kv1.5 channels. British Journal of Pharmacology, 1999, 128, 1071-1081.	5.4	27
77	Blockade of Cardiac Potassium and Other Channels by Antihistamines. Drug Safety, 1999, 21, 11-18.	3.2	27
78	Effects of propafenone and 5-hydroxy-propafenone on hKv1.5 channels. British Journal of Pharmacology, 1998, 125, 969-978.	5.4	51
79	Structural Determinants of Potency and Stereoselective Block of hKv1.5 Channels Induced by Local Anesthetics. Molecular Pharmacology, 1998, 54, 162-169.	2.3	54
80	Block of human cardiac Kv1.5 channels by loratadine: voltage-, time- and use-dependent block at concentrations above therapeutic levels. Cardiovascular Research, 1997, 35, 341-350.	3.8	56
81	Effects of Ropivacaine on a Potassium Channel (hKv1.5) Cloned from Human Ventricle. Anesthesiology, 1997, 86, 718-728.	2.5	43
82	Comparative effects of nonsedating histamine H1 receptor antagonists, ebastine and terfenadine, on human Kv1.5 channels. European Journal of Pharmacology, 1997, 326, 257-263.	3.5	18
83	Electrophysiological effects of CI-980, a tubulin binding agent, on guinea-pig papillary muscles. British Journal of Pharmacology, 1997, 120, 187-192.	5.4	4
84	Effect of descarboethoxyloratadine, the major metabolite of loratadine, on the human cardiac potassium channel Kv1.5. British Journal of Pharmacology, 1997, 122, 796-798.	5.4	16
85	Molecular Determinants of Stereoselective Bupivacaine Block of hKv1.5 Channels. Circulation Research, 1997, 81, 1053-1064.	4.5	70
86	Mechanisms of block of a human cloned potassium channel by the enantiomers of a new bradycardic agent: Sâ€16257â€2 and Sâ€16260â€2. British Journal of Pharmacology, 1996, 117, 1293-1301.	5.4	26
87	Class III Antiarrhythmic Effects of Zatebradine. Circulation, 1996, 94, 562-570.	1.6	86
88	Electromechanical Effects of Zatebradine on Isolated Guinea Pig Cardiac Preparations. Journal of Cardiovascular Pharmacology, 1995, 26, 46-54.	1.9	12
89	Stereoselective block of a human cardiac potassium channel (Kv1.5) by bupivacaine enantiomers. Biophysical Journal, 1995, 69, 418-427.	0.5	158
90	Effects of the two enantiomers, Sâ€16257â€2 and Sâ€16260â€2, of a new bradycardic agent on guineaâ€pig is cardiac preparations. British Journal of Pharmacology, 1995, 115, 787-794.	olated	28

#	Article	IF	CITATIONS
91	Stereoselective Block of Cardiac Sodium Channels by Bupivacaine in Guinea Pig Ventricular Myocytes. Circulation, 1995, 92, 3014-3024.	1.6	174
92	Propafenone Preferentially Blocks the Rapidly Activating Component of Delayed Rectifier K + Current in Guinea Pig Ventricular Myocytes. Circulation Research, 1995, 76, 223-235.	4.5	47
93	On the Molecular Nature of the Lidocaine Receptor of Cardiac Na ⁺ Channels. Circulation Research, 1995, 77, 584-592.	4.5	113
94	Imipramine blocks rapidly activating and delays slowly activating K+ current activation in guinea pig ventricular myocytes Circulation Research, 1994, 74, 687-699.	4.5	44
95	Effects of lisinopril on cardiac contractility and ionic currents. General Pharmacology, 1994, 25, 825-832.	0.7	5
96	Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin. Biophysical Journal, 1994, 67, 161-171.	0.5	36
97	Class I and III antiarrhythmic actions of prazosin in guineaâ€pig papillary muscles. British Journal of Pharmacology, 1994, 111, 717-722.	5.4	9
98	Effects of lisinopril on electromechanical properties and membrane currents in guineaâ€pig cardiac preparations. British Journal of Pharmacology, 1993, 109, 873-879.	5.4	4
99	Electrophysiological Effects of the Combination of Imipramine and Desipramine in Guinea Pig Papillary Muscles. Journal of Cardiovascular Pharmacology, 1993, 21, 13-20.	1.9	12
100	Electrophysiological effects of CREâ€1087 in guineaâ€pig ventricular muscles. British Journal of Pharmacology, 1992, 107, 515-520.	5.4	4
101	Pharmacology of CRE-1087, A New Antiarrhythmic Drug. Cardiovascular Drug Reviews, 1992, 10, 307-322.	4.1	1
102	Electrophysiological effects of the combination of mexiletine and flecainide in guineaâ€pig ventricular fibres. British Journal of Pharmacology, 1991, 103, 1411-1416.	5.4	6
103	Voltage- and Use-Dependent Modulation of Calcium Channel Current in Guinea Pig Ventricular Cells by Amiodarone and Des-Oxo-Amiodarone. Journal of Cardiovascular Pharmacology, 1991, 17, 894-902.	1.9	19
104	Tonic and frequency-dependent \$\$mathop {ext{V}}limits^{ext{.}} _{{ext{max}}} \$\$ block induced by (S)-nafenodone, a new antidepressant drug, in guinea-pig papillary muscles. Naunyn-Schmiedeberg's Archives of Pharmacology, 1991, 343, 638-44.	3.0	2
105	Tonic and Frequency-Dependent Vmax Block Induced by Imipramine in Guinea Pig Ventricular Muscle Fibers. Journal of Cardiovascular Pharmacology, 1990, 15, 414-420.	1.9	18
106	Electrophysiologic Interactions Between Mexiletine and Propafenone in Guinea Pig Papillary Muscles. Journal of Cardiovascular Pharmacology, 1989, 14, 351-357.	1.9	15
107	Electrophysiological effects of Eâ€3753, a new antiarrhythmic drug, in guineaâ€pig ventricular muscle. British Journal of Pharmacology, 1989, 96, 970-976.	5.4	11
108	Electrophysiologic Interactions Between Mexiletine-Quinidine and Mexiletine-Ropitoin in Guinea Pig Papillary Muscle. Journal of Cardiovascular Pharmacology, 1989, 14, 783-789.	1.9	13

#	Article	IF	CITATIONS
109	Tonic and Phasic Vmax Block Induced by 5-Hydroxypropafenone in Guinea Pig Ventricular Muscles. Journal of Cardiovascular Pharmacology, 1988, 12, 423-431.	1.9	19
110	Electrophysiological Effects of 5-Hydroxypropafenone on Guinea Pig Ventricular Muscle Fibres. Journal of Cardiovascular Pharmacology, 1987, 10, 523-529.	1.9	27
111	Effects of 5-hydroxy-propafenone in guinea-pig atrial fibres. British Journal of Pharmacology, 1987, 90, 575-582.	5.4	14
112	Electrophysiological effects of amoxapine in untreated and in amoxapineâ€pretreated rat atria. British Journal of Pharmacology, 1986, 87, 317-325.	5.4	3
113	Negative inotropic effect of somatostatin in guineaâ€pig atrial fibres. British Journal of Pharmacology, 1985, 86, 547-555.	5.4	29