
Kangbing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9061247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Centers and Organic Ligands Determine Electrochemistry of Metal–Organic Frameworks. Small, 2022, 18, e2106607.	10.0	12
2	Advanced Functional Electroactive and Photoactive Materials for Monitoring the Environmental Pollutants. Advanced Functional Materials, 2021, 31, 2008227.	14.9	39
3	Cu-BTC frameworks based electrochemical sensor for hazardous malachite green in aquaculture. Analytica Chimica Acta, 2021, 1162, 338473.	5.4	19
4	Polyvinylpyrrolidone-assisted solvent exfoliation of black phosphorus nanosheets and electrochemical sensing of p-nitrophenol. Analytica Chimica Acta, 2021, 1167, 338594.	5.4	14
5	Twoâ€Dimensional Red Phosphorus Nanosheets: Morphology Tuning and Electrochemical Sensing of Aromatic Amines. Small Methods, 2021, 5, e2100720.	8.6	8
6	Monodispersed Ni active sites anchored on N-doped porous carbon nanosheets as high-efficiency electrocatalyst for hydrogen peroxide sensing. Analytica Chimica Acta, 2021, 1179, 338812.	5.4	10
7	Simultaneous detection of 4-chlorophenol and 4-nitrophenol using a Ti ₃ C ₂ T _{<i>x</i>} MXene based electrochemical sensor. Analyst, The, 2021, 146, 7593-7600.	3.5	13
8	Morphology-controlled electrochemical sensing of erbium- benzenetricarboxylic acid frameworks for azo dyes and flavonoids. Sensors and Actuators B: Chemical, 2020, 304, 127370.	7.8	9
9	Poly(sulfosalicylic acid)-functionalized gold nanoparticles for the detection of tetrabromobisphenol A at pM concentrations. Journal of Hazardous Materials, 2020, 388, 121733.	12.4	7
10	Electrochemistry of Solvent-Exfoliated Red Phosphorus Nanosheets. Sensors and Actuators B: Chemical, 2020, 320, 128359.	7.8	4
11	Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A. Sensors and Actuators B: Chemical, 2020, 310, 127885.	7.8	55
12	Triethylamine-controlled Cu-BTC frameworks for electrochemical sensing fish freshness. Analytica Chimica Acta, 2019, 1085, 68-74.	5.4	33
13	Defect-dependent electrochemistry of exfoliated graphene layers. Carbon, 2019, 154, 125-131.	10.3	35
14	Theoretical study of the ligand effect on NHC–cobalt-catalyzed hydrogenation of ketones. Catalysis Science and Technology, 2019, 9, 5315-5321.	4.1	6
15	Ballâ€Millâ€Exfoliated Graphene: Tunable Electrochemistry and Phenol Sensing. Small, 2019, 15, e1805567.	10.0	57
16	In-situ synthesis of carbon-encapsulated Ni nanoparticles decorated graphene nanosheets with high reactivity toward glucose oxidation and sensing. Carbon, 2019, 148, 44-51.	10.3	35
17	Strategy for Highly Sensitive Electrochemical Sensing: In Situ Coupling of a Metal–Organic Framework with Ball-Mill-Exfoliated Graphene. Analytical Chemistry, 2019, 91, 6043-6050.	6.5	53
18	Electrochemical sensing performance of Eu-BTC and Er-BTC frameworks toward Sunset Yellow. Analytica Chimica Acta, 2019, 1062, 78-86.	5.4	38

#	Article	IF	CITATIONS
19	Detection of Tumor Marker Using ZnO@Reduced Graphene Oxide Decorated with Alkaline Phosphatase-Labeled Magnetic Beads. ACS Applied Nano Materials, 2019, 2, 7747-7754.	5.0	15
20	Potential-Tunable Metal–Organic Frameworks: Electrosynthesis, Properties, and Applications for Sensing of Organic Molecules. Journal of Physical Chemistry C, 2019, 123, 2248-2255.	3.1	22
21	Maternal arsenic exposure and birth outcomes: A birth cohort study in Wuhan, China. Environmental Pollution, 2018, 236, 817-823.	7.5	51
22	Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 137-145.	5.3	62
23	Reduced graphene oxide-ZnO nanocomposite based electrochemical sensor for sensitive and selective monitoring of 8-hydroxy-2′-deoxyguanosine. Talanta, 2018, 185, 550-556.	5.5	39
24	Tunable Electrochemistry of Electrosynthesized Copper Metal–Organic Frameworks. Advanced Functional Materials, 2018, 28, 1706961.	14.9	94
25	Electrochemistry of ZnO@reduced graphene oxides. Carbon, 2018, 130, 480-486.	10.3	58
26	Electrochemical sensing of terabromobisphenol A at a polymerized ionic liquid film electrode and the enhanced effects of anions. Ionics, 2018, 24, 2843-2850.	2.4	9
27	Tuning electrochemical behaviors of N-methyl-2-pyrrolidone liquid exfoliated graphene nanosheets by centrifugal speed-based grading. Carbon, 2018, 129, 183-190.	10.3	27
28	Enhanced effects of ionic liquid and gold nanoballs on the photoelectrochemical sensing performance of WS2 nanosheets towards 2,4,6-tribromophenol. Electrochimica Acta, 2018, 271, 551-559.	5.2	15
29	N-methylpyrrolidone exfoliated graphene as sensitive electrochemical sensing platform for 10-Hydroxycamptothecine. Journal of Electroanalytical Chemistry, 2018, 818, 210-215.	3.8	5
30	Substitution group effects of 2-mercaptobenzothiazole on gold nanoparticles toward electrochemical oxidation and sensing of tetrabromobisphenol A. Electrochimica Acta, 2018, 270, 517-525.	5.2	4
31	Impedance sensing platform for 4,4′-dibromobiphenyl based on a molecularly imprinted polymerized ionic liquid film/gold nanoparticle-modified glassy carbon electrode. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	3
32	N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim. Sensors and Actuators B: Chemical, 2018, 274, 551-559.	7.8	33
33	Portable, Self-Powered, and Light-Addressable Photoelectrochemical Sensing Platforms Using pH Meter Readouts for High-Throughput Screening of Thrombin Inhibitor Drugs. Analytical Chemistry, 2018, 90, 9366-9373.	6.5	49
34	Morphology-dependent electrochemical sensing performance of metal (Ni, Co, Zn)-organic frameworks. Analytica Chimica Acta, 2018, 1031, 60-66.	5.4	45
35	Reusable Boron-Doped Diamond Electrodes for the Semi-Continuous Detection of Tetrabromobisphenol A. IEEE Sensors Journal, 2018, 18, 5219-5224.	4.7	6
36	Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sensors and Actuators B: Chemical, 2017, 245, 205-212.	7.8	35

#	Article	IF	CITATIONS
37	Trace analysis of ponceau 4R based on the signal amplification of copper-based metal-organic framework modified electrode. Journal of Electroanalytical Chemistry, 2017, 794, 229-234.	3.8	15
38	Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Mikrochimica Acta, 2017, 184, 195-202.	5.0	42
39	Fabrication of an electrochemical immunosensor for α-fetoprotein based on a poly-L-lysine-single-walled carbon nanotubes/Prussian blue composite film interface. Journal of Solid State Electrochemistry, 2016, 20, 2217-2222.	2.5	12
40	Morphology-dependent electrochemistry of FeOOH nanostructures. Electrochemistry Communications, 2016, 68, 10-14.	4.7	32
41	Resonance energy transfer between ZnCdHgSe quantum dots and gold nanorods enhancing photoelectrochemical immunosensing of prostate specific antigen. Analytica Chimica Acta, 2016, 943, 106-113.	5.4	23
42	Electrochemical sensing platform for tetrabromobisphenol A at pM level based on the synergetic enhancement effects of graphene and dioctadecyldimethylammonium bromide. Analytica Chimica Acta, 2016, 935, 90-96.	5.4	7
43	Highlyâ€sensitive Electrochemical Sensor for Cd ²⁺ and Pb ²⁺ Based on the Synergistic Enhancement of Exfoliated Graphene Nanosheets and Bismuth. Electroanalysis, 2016, 28, 63-68.	2.9	17
44	Porous Carbon Modified Electrode as a Highlyâ€sensitive Electrochemical Sensing Platform for Salvianolic Acidâ€B. Electroanalysis, 2016, 28, 235-242.	2.9	3
45	Highâ€Performance Hydrazine Sensor Based on Graphene Nano Platelets Supported Metal Nanoparticles. Electroanalysis, 2016, 28, 126-132.	2.9	16
46	Synergetic enhancement of gold nanoparticles and 2-mercaptobenzothiazole as highly-sensitive sensing strategy for tetrabromobisphenol A. Scientific Reports, 2016, 6, 26044.	3.3	14
47	Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid. Scientific Reports, 2016, 6, 22309.	3.3	12
48	Simultaneous determination of environmental estrogens: Diethylstilbestrol and estradiol using Cu-BTC frameworks-sensitized electrode. Talanta, 2016, 159, 215-221.	5.5	28
49	Signal enhancement of cetyltrimethylammonium bromide as a highly-sensitive sensing strategy for tetrabromobisphenol A. Journal of Electroanalytical Chemistry, 2016, 770, 39-43.	3.8	10
50	Iron oxyhydroxide nanorods with high electrochemical reactivity as a sensitive and rapid determination platform for 4-chlorophenol. Journal of Hazardous Materials, 2016, 307, 36-42.	12.4	12
51	Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A. Mikrochimica Acta, 2016, 183, 689-696.	5.0	26
52	Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and Tartrazine. Sensors and Actuators B: Chemical, 2016, 231, 12-17.	7.8	80
53	Electrochemical enhancement of long alkyl-chained surfactants for sensitive determination of tetrabromobisphenol A. Electrochimica Acta, 2016, 190, 490-494.	5.2	28
54	Electrochemical enhancement of acetylene black film as sensitive sensing platform for toxic tetrabromobisphenol A. RSC Advances, 2015, 5, 105837-105843.	3.6	16

#	Article	IF	CITATIONS
55	Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosensors and Bioelectronics, 2015, 74, 792-798.	10.1	66
56	Electrochemical immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized with a high molecular-weight silk peptide. Mikrochimica Acta, 2015, 182, 2061-2067.	5.0	35
57	Electrochemical Functionalization of <i>N</i> -Methyl-2-pyrrolidone-Exfoliated Graphene Nanosheets as Highly Sensitive Analytical Platform for Phenols. Analytical Chemistry, 2015, 87, 3294-3299.	6.5	68
58	Enhanced-oxidation and highly-sensitive detection of acetaminophen, guanine and adenine using NMP-exfoliated graphene nanosheets-modified electrode. Electrochimica Acta, 2015, 166, 285-292.	5.2	38
59	White-Light-Exciting, Layer-by-Layer-Assembled ZnCdHgSe Quantum Dots/Polymerized Ionic Liquid Hybrid Film for Highly Sensitive Photoelectrochemical Immunosensing of Neuron Specific Enolase. Analytical Chemistry, 2015, 87, 4237-4244.	6.5	70
60	Lithium-doped NiO nanofibers for non-enzymatic glucose sensing. Electrochemistry Communications, 2015, 61, 89-92.	4.7	34
61	Highly sensitive electrochemical detection of bisphenol A based on the cooperative enhancement effect of the graphene–Ni(OH) ₂ hybrid and hexadecyltrimethylammonium bromide. Analytical Methods, 2015, 7, 9261-9267.	2.7	7
62	Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon. Analytica Chimica Acta, 2015, 887, 75-81.	5.4	38
63	Highly sensitive electrochemical sensor for toxic ractopamine based on the enhancement effect of acetylene black nanoparticles. Analytical Methods, 2015, 7, 8069-8077.	2.7	16
64	Electrochemical tuning of the activity and structure of a copper-cobalt micro-nano film on a gold electrode, and its application to the determination of glucose and of Chemical Oxygen Demand. Mikrochimica Acta, 2015, 182, 515-522.	5.0	28
65	Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor. Food Chemistry, 2015, 166, 352-357.	8.2	57
66	Liquid-phase exfoliated graphene as highly-sensitive sensor for simultaneous determination of endocrine disruptors: Diethylstilbestrol and estradiol. Journal of Hazardous Materials, 2015, 283, 157-163.	12.4	50
67	Preparation of three-dimensionally ordered macroporous polycysteine film and application in sensitive detection of 4-chlorophenol. Electrochimica Acta, 2014, 130, 734-739.	5.2	23
68	Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing. Analytica Chimica Acta, 2014, 825, 26-33.	5.4	66
69	Synergetic signal amplification of graphene-Fe2O3 hybrid and hexadecyltrimethylammonium bromide as an ultrasensitive detection platform for bisphenol A. Electrochimica Acta, 2014, 115, 434-439.	5.2	35
70	Versatile Matrix for Constructing Enzyme-Based Biosensors. ACS Applied Materials & Interfaces, 2014, 6, 17296-17305.	8.0	29
71	Highly sensitive electrochemical sensor for sunset yellow based on the enhancement effect of alumina microfibers. Sensors and Actuators B: Chemical, 2013, 185, 582-586.	7.8	44
72	Sensitive and rapid monitoring of water pollution level based on the signal enhancement of an activated glassy carbon electrode. Analytical Methods, 2012, 4, 2715.	2.7	4

#	Article	IF	CITATIONS
73	Heterocyclic Microporous Polymers: Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2Capturing Materials (Adv. Mater. 42/2012). Advanced Materials, 2012, 24, 5702-5702.	21.0	3
74	Electrochemical sensor for toxic ractopamine and clenbuterol based on the enhancement effect of graphene oxide. Sensors and Actuators B: Chemical, 2012, 168, 178-184.	7.8	109
75	Electrochemical Tuning the Activity of Nickel Nanoparticle and Application in Sensitive Detection of Chemical Oxygen Demand. Journal of Physical Chemistry C, 2011, 115, 22845-22850.	3.1	47
76	Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode. Food Chemistry, 2011, 128, 569-572.	8.2	36
77	Structure and magnetic properties of Ni-doped ZnO powder. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 770-773.	1.0	4
78	Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red. Food Chemistry, 2010, 122, 909-913.	8.2	110
79	Electrochemical Determination of p-Chlorophenol Based on the Surface Enhancement Effects of Mesoporous TiO[sub 2]-Modified Electrode. Journal of the Electrochemical Society, 2009, 156, F151.	2.9	10
80	Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A. Analytica Chimica Acta, 2009, 638, 23-28.	5.4	179
81	Electrochemical Sensing of Rutin Using an MCM-41 Modified Electrode. Analytical Letters, 2009, 42, 678-688.	1.8	17
82	Electrochemical determination of uric acid using a mesoporous SiO2-modified electrode. Mikrochimica Acta, 2008, 161, 249-253.	5.0	13
83	Modification of montmorillonite with cationic surfactant and application in electrochemical determination of 4-chlorophenol. Colloids and Surfaces B: Biointerfaces, 2008, 65, 281-284.	5.0	40
84	Application of Multiâ€walled Carbon Nanotubes/Nafion Composite Film in Electrochemical Determination of Pb ²⁺ . Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 103-113.	2.1	37
85	Electrochemical determination of lead(II) using a montmorillonite calcium-modified carbon paste electrode. Mikrochimica Acta, 2007, 158, 255-260.	5.0	30
86	Electrochemical Determination of 10-Hydroxycamptothecin Using a Multi-Wall Carbon Nanotube-Modified Electrode. Mikrochimica Acta, 2006, 152, 255-260.	5.0	15
87	Electrochemistry and voltammetry of procaine using a carbon nanotube film coated electrode. Bioelectrochemistry, 2006, 68, 144-149.	4.6	37
88	Sensitive Adsorption Stripping Voltammetric Determination of Reserpine by a Glassy Carbon Electrode Modified with Multi-Wall Carbon Nanotubes. Mikrochimica Acta, 2005, 149, 73-78.	5.0	21
89	Voltammetric determination of diethylstilbestrol at carbon paste electrode using cetylpyridine bromide as medium. Talanta, 2002, 58, 747-754.	5.5	75
90	Voltammetric behavior and determination of estrogens at Nafion-modified glassy carbon electrode in the presence of cetyltrimethylammonium bromide. Analytica Chimica Acta, 2002, 464, 209-216.	5.4	135